

L-O Damm, L. Lundberg and C. Wohlin, "Faults-slip-through - A Concept
for Measuring the Efficiency of the Test Process", Wiley Journal of

Software: Process Improvement and Practice, Volume 11, No. 1, pp. 47-
59, 2006.

Faults-slip-through – A Concept for Measuring the Efficiency of the Test Process

Lars-Ola Damm1, 2, Lars Lundberg2, Claes Wohlin2
1 Ericsson AB, Ölandsgatan 1,

Box 518, SE-371 23, Karlskrona,
Lars-Ola.Damm@ericsson.com

2 School of Engineering, Blekinge Institute of Technology,
Box 520, SE-372 25 Ronneby,

{Lars-Ola.Damm, Lars.Lundberg}@bth.se

SUMMARY
In market-driven development where time-to-market is of crucial importance, software development companies seek

improvements that can decrease the lead-time and improve the delivery precision. One way to achieve this is by analyzing
the test process since rework commonly accounts for more than half of the development time. A large reason for high
rework costs is fault slippages from earlier phases where they are cheaper to find and remove. As input to improvements,
this paper introduces a measure that can quantify this relationship. That is, a measure called faults-slip-through, which
determines which faults that would have been more cost-effective to find in an earlier phase. The method presented in
this paper also determines the excessive costs of the faults that slipped through phases, i.e. the improvement potential.
The method was validated through practical application in two software development projects at the telecom company
Ericsson AB. The results of the case study determined that the implementation phase had the largest improvement
potential in the two studied projects since it caused a large faults-slip-through to later phases, i.e. 85 and 86 percent of the
total improvement potential of each project.

KEYWORDS: fault metrics; software process improvement; faults-slip-through; early fault detection; fault latency

1. Introduction

Reducing development costs and time-to-market while
still maintaining a high level of product quality is
essential for many modern software development
organizations. These organizations seek specialized
processes that could give them rapid improvements.
However, they often overlook existing routinely collected
data that can be used for process analysis (Cook et al.
1998). One such data source is fault reports since
avoidable rework accounts for a significant percentage of
the total development time, i.e. between 20-80 percent
depending on the maturity of the development process
(Shull et al. 2002). In fact, related research states that
fault analysis is the most promising approach to software
process improvement (Grady 1992).

A software development department at Ericsson AB
develops component-based software for the mobile
network. In order to stay competitive, they run a
continuous process improvement program where they
regularly need to decide where to focus the current
improvement efforts. However, as considered a common
reality in industry, the department is already aware of
potential improvement areas; the challenge is to prioritize

the areas to know where to focus the improvement work
(Wohlwend and Rosenbaum 1993). Without such a
decision support, it is common that improvements are not
implemented because organizations find them difficult to
prioritize (Wohlwend and Rosenbaum 1993). Further, if a
suggested improvement can be supported with data, it
becomes easier to convince people to make changes more
quickly (Grady 1992). As stated above, fault statistics is
one useful information source in software process
improvement; therefore, the general research question of
this paper is:
How can fault statistics be used for assessing a test
process and quantifying the improvement potential of it in
a software development organization?

Classification of faults from their causes, e.g. root
cause analysis, is a commonly used approach for fault
analysis (Leszak et al. 2000). Although root cause
analysis can provide valuable information about what
types of faults the process is not good at
preventing/removing, the technique is cost intensive and
therefore not easy to apply on larger populations of faults.
Additionally, root cause analysis does not measure what
the total cost of the slipped faults is. A test-oriented
approach for fault analysis is fault trigger classification,
which categorizes faults after which test activity that

triggered them (Chillarege and Prasad 2002). This
technique can be used for identifying how good a phase is
at finding the faults it should find. However, as for root
cause analysis, the technique cannot quantify the cost of
faults that should have been found earlier.

To be able to address the stated research question, this
paper instead introduces a method in which a central part
is a ‘faults-slip-through’ measure. That is, the faults are
classified according to whether they slipped through the
phase where they should have been found. This approach
to fault classification has been used before (Basili and
Green 1994, Hevner 1997). However, the method
presented in this paper has two main differences. First,
faults-slip-through focuses on when it is cost-effective to
find each fault, it does not consider fault insertion phase.
Second, the presented method also calculates the
improvement potential by relating the result of the fault
classification with the average cost of finding and
repairing the faults. That is, the method measures the
improvement potential by multiplying the faults-slip-
through distribution with the average benefit of finding a
fault earlier.

In order to validate the applicability of the method, the
paper also provides an empirical case study where the
method is applied on the faults reported in two finished
development projects at Ericsson AB. The work
presented in this paper is based on previous work on
faults-slip-through based improvement work (Damm et
al. 2004). The paper is outlined as follows. Section 2
presents related work to the proposed method in this
paper. Then, Section 3 describes the proposed method for
how to determine the improvement potential of an
organization. Section 4 demonstrates the applicability of
the method through an empirical case study. Section 5
discusses the validity and implications of the results and
Section 6 concludes the work.

2. Related Work

The Capability Maturity Model (CMM) is one of the
most widely used models for software process
improvement (Paulk et al. 1995). The essence of this
model and its tailored variant SW-CMM (SW-CMM) is
for organizations to strive for achieving higher maturity
levels and thereby become better at software
development. However, such blueprint models have been
criticized because they are focused on making an
organization more structured and work according to what
is defined to be state of the art in the model. That is,
although state of the art models can provide some
guidance to areas of improvement, there are no generally
applicable solutions (Glass 2004, Mathiassen et al. 2002).

The opposite of applying a model-based approach is
the bottom-up approach where improvements are
identified and implemented locally in a problem-based

fashion (Jakobsen 1998). Originating from the widely
recognized concept Total Quality Management (Deming
2000), a typical bottom-up approach is the Quality
Improvement Paradigm (QIP). In QIP, a six-step
improvement cycle guides an organization through
continuous improvements based on QIP (Basili and Green
1994). From defined problem based improvements, QIP
sets measurable goals to follow up after the
implementation. However, QIP is more of a generic
framework for which steps to include in an improvement
cycle, it does not state exactly how to perform them. That
is, in practice, the method in this paper could instead be
included as a part of QIP, i.e. by including faults-slip-
through as an important measure to follow up with
respect to fault cost reduction.

Fault-oriented measures are within process assessment
and improvement used for different purposes. That is, the
purpose of fault analysis is to improve the process to
make the products more fault tolerant, reduce the amount
of introduced faults, or to prevent the faults from being
introduced in the first place (Tian 2001). Based on a
survey, it is concluded that the application domain and the
current process affect which approach to prefer, but
overall, it is most efficient to combine the three
techniques (Tian 2001). The approach presented in this
paper focuses on fault reduction and fault prevention.

A widely spread fault measurement approach is ‘Six
sigma‘, which is centered on a measure that determines
the number of faults in relation to product size (Biehl
2004). Further, as earlier mentioned, the measure applied
in this paper is similar to measures used in related work,
e.g. phase containment metrics where faults should be
found in the same phase as they were introduced (Hevner
1997), and goodness measures where faults should be
found in the earliest possible phase (Berling and Thelin
2003). In contrast to the faults-slip-through measure,
these measures are strongly related to the notion of fault
latency, i.e. for how long time does a fault remain in a
product. The implication of this is that since most faults
are inserted during analysis, design and coding, the
measures primarily provide feedback on earlier phases
instead of the test process. Therefore, they are not suitable
for improvements aimed at the test process.

Finally, related work on calculating the improvement
potential from faults has been done before, i.e. by
calculating the time needed in each phase when faults
were found when supposed to in comparison to when
they were not (Tanaka et al. 1995). Although the results
of using such an approach are useful for estimating the
effect of implementing a certain improvement, they
require measurements on the additional effort required for
removing the faults earlier. Such measurements require
decisions on what improvements to make and estimates of
what they cost and therefore they cannot be used as input

when deciding in which phases to focus the
improvements and what the real potential is.

3. Method

3.1. Estimation of Improvement Potential

The purpose of this paper is to demonstrate how to
determine the improvement potential of a development

process from historical fault data. This section describes
the selected method for how to achieve this through the
following three steps:

Table 1. Fictitious example of faults-slip-through data (nr. faults found, belonging /phase)

 PF:
PB: Design Impl. Function

Test
System

Test Operation Total
belonging/phase

Design 1 1 10 5 1 18
Impl. 4 25 18 2 49
Function Test 15 5 4 24
System Test 13 2 15
Operation 0 0
Tot. found/phase 1 5 50 41 9 106

(1) Determine which faults that could have been avoided

or at least found earlier
(2) Determine the average cost of finding faults in

different phases.
(3) Determine the improvement potential from the results

in (1) and (2).
In this context, a fault is defined as an anomaly that

causes a failure (IEEE 1988). The following three sub-
sections describe how to perform each of the three steps.

3.1.1. Faults-slip-through measurement
When using fault data as basis for determining the

improvement potential of an organization’s development
process, the essential analysis to perform is whether the
faults could have been avoided or at least have been
found earlier. As previously mentioned, the introduced
measure for determining this is called ‘faults-slip-
through’, i.e. whether a fault slipped through the phase
where it should have been found. The definition of it is
similar to measures used in related studies, e.g. phase
containment metrics where faults should be found in the
same phase as they were introduced (Hevner 1997), and
goodness measures where faults should be found in the
earliest possible phase (Basili and Green 1994). The main
difference between the faults-slip-through measure and
the other measures is when a fault is introduced in a
certain phase but it is not efficient to find in the same
phase, e.g. a certain test technique might be required to
simulate the behaviour of the function. Then it is not a
faults-slip-through. Figure 1 further illustrates this
difference.

Figure 1. Fault latency versus faults-slip-through

A consequence of how faults-slip-through is measured
is that a definition must be created to support the
measure, i.e. a definition that specifies which faults that
should be found in which phase. To be able to specify
this, the organization must first determine what should be
tested in which phase. Therefore, this can be seen as test
strategy work. Thus, experienced developers, testers and
managers should be involved in the creation of the
definition. The results of the case study in Section 4.2
further exemplify how to create such a definition. Table 1
provides a fictitious example of faults-slip-through
between arbitrarily chosen development phases. The
columns represent in which phase the faults were found
(PF) and the rows represent where the faults should have
been found (Phase Belonging, PB). For example, 25 of
the faults that were found in Function Test should have
been found during implementation (e.g. through
inspections or unit tests). Further, the rightmost column

summarizes the amount of faults that belonged to each
phase whereas the bottom row summarizes the amount of
faults that were found in each phase. For example, 49
faults belonged to the implementation phase whereas
most of the faults were found in Function Test (50).

3.1.2. Average Fault Cost
When having all the faults categorized according to

the faults-slip-through measure, the next step is to
estimate the cost of finding faults in different phases.
Several studies have shown that the cost of finding and
fixing faults increases more and more the longer they
remain in a product (Boehm 1983, Shull et al. 2002).
However, the cost-increase varies significantly depending
on the maturity of the development process and on
whether the faults are severe or not (Shull et al. 2002).
Therefore, the average fault cost in different phases needs
to be determined explicitly in the environment where the
improvement potential is to be determined (see a fictitious
example in Table 2). This measure could either be
obtained through the time reporting system or from expert
judgments, e.g. a questionnaire where the
developers/testers that were involved in the bug-fix give
an estimate of the average cost.

Table 2. Fictitious example of average fault cost/phase found

 Design Implementation FT* ST* Operation
Average
fault cost 1 2 10 25 50

*FT=Function Test, ST=System Test

Expert judgments are a fast and easy way to obtain the

measures; however, in the long-term, fully accurate
measures can only be obtained by having the cost of
every fault stored with the fault report when repairing it.
That is, when the actual cost is stored with each fault
report, the average cost can be measured instead of just
being subjectively estimated. Further, when obtaining
these measures, it is important not just to include the cost
of repairing the fault but also fault reporting and re-
testing after the fault is corrected. Note that the individual
fault cost varies depending on the type of fault. Therefore,
estimation of an average fault cost requires a relatively
large amount of faults to be reliable.

3.1.3. Improvement Potential
The third step (e.g. the improvement potential) is

determined by calculating the difference between the cost

of faults in relation to what the fault cost would have
been if none of them would have had slipped through the
phase where they were supposed to be found. Figure 2
provides the formulas for making such a calculation and
as presented in the table in the figure, the improvement
potential can be calculated in a two-dimensional matrix.
The equation in the figure provides the actual formula for
calculating the improvement potential for each cell
(IPxy). PFx total and PBx total are calculated by
summarizing the corresponding row/column. As
illustrated rightmost in the figure, the average fault cost
(as discussed in the previous paragraph), need to be
determined for each phase before using it in the formula
(IPxy). In order to demonstrate how to use and interpret
the matrix, Table 3 provides an example calculation by
applying the formulas in Figure 2 on the fictitious values
in Table 1 and Table 2. In Table 3, the most interesting
cells are those in the rightmost column that summarizes
the total cost of faults in relation to fault belonging and
the bottom row that summarizes the total unnecessary
cost of faults in relation to phase found. For example, the
largest improvement potential is in the implementation
phase, i.e. the phase triggered 710 hours of unnecessary
costs in later phases due to a large faults-slip-through
from it. Note that taking an action that removes the faults-
slip-through from the implementation phase to later
phases will increase the fault cost of the implementation
phase, i.e. up to 45 hours (1 hour/fault times 49 faults
minus 4). Further, System Test is the phase that suffered
from the largest excessive costs due to faults slipped
through (609 hours). However, when interpreting such
excessive costs, one must be aware of that some sort of
investment is required in order to get rid of them, e.g. by
adding code inspections. Thus, the potential gain is
probably not as large as 609 hours. Therefore, the primary
usage of the values is to serve as input to an expected
Return On Investment (ROI) calculation when
prioritizing possible improvement actions.

When measured in percent, the improvement potential
for a certain phase equals the improvement potential in
hours divided with the total improvement potential (e.g.
in the example provided in Table 3, the fault slippage to
System Test can be decreased by = 609/1255=49%). In
the case study reported in the next section, the
measurements are provided in percent (due to
confidentiality reasons).

Figure 2. Matrix formula for calculation of improvement potential

Table 3. Example of calculation of improvement potential (hours)

4. Results from Applying the Method

This section describes the case study application of the
previously defined described method. First, Section 4.1
provides an overview of the case study environment.
After that, sections 4.2-4.4 describes the result of
applying the three steps of the method.

4.1. Case Study Setting

The applicability of the described method was
evaluated by using it on the faults reported in two projects
at a department at Ericsson AB. To be able to understand
and interpret the results reported from these two projects,
the contextual setting of the case study needs to be well
described (Kitchenham et al. 2002).

The projects developed functionality to be included in
new releases of two different telecom products. Hence,
previous versions of the products were already in full
operation at customer sites. The products are launched as
software services operating in mobile networks. Further,
the projects used the same processes and tools and the
products developed in the projects were developed on the
same platform (i.e. the platform provides a component-
based architecture and a number of platform components
that are used by both products). The products were

developed mainly in C++ except for a Java-based
graphical user interface that constitutes minor parts of
each product. Apart from the platform components, each
product consists of about 10-30 components and each
component consists of about 5-30 classes. The process
used for developing the products was based on an
incremental approach including the traditional
development phases: analysis, design, implementation,
and test. Details about the phases relevant to the case
study are described in Section 4.2. The participants in the
projects had different experience and skill levels.
However, most of the participants had several years of
experience in software development within the
application domain including experience with the tools
and processes used by the organization. In fact, at most
10 percent of them had less than one year of practical
experience. Further, most of the participants had at least a
bachelor degree in computer science or the like.

The reason for studying more than one project was to
be able to strengthen the validity of the results, i.e. two
projects that were developed in the same environment and
according to the new development process should provide
similar results (except for known events in the projects
that affected the results). Further, two projects were
chosen since the selected projects were the only recently
finished projects and because earlier finished projects
were not developed according to the same process.

 PF:
PB Design Impl. Function Test System Test Operation Total

PB/phase

Design
1*1-1*1

= 0
1*2-1*1

= 1h
10*10-10*1

= 90h
5*25-5*1

= 120
1*50-1*1

= 49 260h

Impl.
 4*2-4*2

= 0
25*10-25*2

= 200h
18*25-18*2

= 414h
2*50-2*2

= 96h 710h

Function Test
 15*10-15*10

= 0
5*25-5*10

= 75h
4*50-4*10

= 160h 235h

System Test

13*25-13*25

= 0
2*50-2*25

= 50h 50h
Operation 0 0h
Total
potential/ PF 1h 290h 609h 355h 1255h

Thereby, it was the two selected projects that could be
considered as representative for the organization.

The reported faults originated from the test phases
performed by the test unit at the department, i.e. faults
found earlier were not reported in a written form that
could be post-analyzed. Further, during the analysis,
some faults were excluded either because they were
rejected or because they did not affect the operability of
the products, e.g. opinion about function, not
reproducible faults, and documentation faults. Finally,
requirements faults were not reported in the fault
reporting system. Instead, they were handled separately as
change requests.

4.2. Faults-Slip-Through

Figure 3 and Figure 4 present the average percent faults-
slip-through in relation to percent faults found and
development phase from two finished projects at the
department. The faults-slip-through measure was not
introduced until after the project completions, and hence
all the fault reports in the projects studied needed to be
classified according to the method described in Section
3.1 in retrospect. The time required for performing the
classification was on average two minutes/fault. Actually,
several faults could be classified a lot faster but some of
them took a significantly longer time since these fault
reports lacked information about the causes of the faults.
In those cases, the person that repaired the fault needed to
be consulted about the cause. In the future, this overhead
work could be avoided by making sure that the faults are
classified on the fly instead. Section 5.1 describes how
this was achieved at the studied department. In order to
obtain a consensus on what faults should be considered as
faults-slip-through and not, a workshop with key
representatives from different areas at the department was
held. The output from the workshop was a definition of
which faults that should belong to which phase. Appendix
A presents the obtained definition for each phase.
However, note that the two last phases below (FiT+6,
FiT_7-12) were not included in the definition since at that
stage all faults were considered as faults-slip-through.
When assigning faults to different phases, the possible
phases to select among were the following:
Implementation (Imp): Faults found when implementing
the components, e.g. coding faults found during code
inspections and unit tests.

Integration Test (IT): Faults found during primary
component integration tests, e.g. installation faults and
basic component interaction faults.
Function Test (FT): Faults found when testing the
features of the system.
System Test (ST): Includes integration with external
systems and testing of non-functional requirements.
Field Test + 6 months (FiT+6): During this period, the
product is tested in a real environment (e.g. installed into
a mobile network), either at an internal test site or
together with a customer. During the first six months,
most issues should be resolved and the product then
becomes accepted for full operation.
Field Test 7-12 months (FiT_7-12): Same as FiT+6;
however, after 6 months of field tests, live usage of the
product has normally begun.

Regarding the possible phases to select between, it
could have been possible to include earlier phases such as
requirements analysis and system design. However, since
the studied department wanted to focus on feedback on
the test phases when using this measure, earlier phases
were excluded.

As can be seen in the figures below, several faults
belonged to the implementation phase in the two projects,
i.e. 63 and 68 percent respectively. Further, in project A
(Figure 3), many faults were found in FiT+6 (29%). The
primary reason for this was that the field tests started
before ST was completed, i.e. the phases were
overlapping which resulted in that ST continued to find
faults during FiT+6. These ST faults could for practical
reasons only be classified as FiT+6 faults.

The figures below illustrate the faults-slip-through
distributions of the projects in a good way. However,
sometimes it is more feasible to present the measure as
the total amount of faults-slip-through to a certain phase,
e.g. at the studied department the measure was to be used
as goal values in balanced scorecards (Kaplan and Norton
1996). That is, in this case only a few key goal measures
were requested and therefore, a multi-valued graph was
not feasible. Table 4 describes how this was applied at
Ericsson AB. For example, in the table, 69, and 80
percent faults-slip-through to FT was calculated as a sum
of all faults that should have been found in earlier
previous phases divided with the number of faults found
in FT.

Figure 3. Percent faults-slip-through in relation to percent faults found and development phase (Project A)

Figure 4. Percent faults-slip-through in relation to percent faults found and development phase (Project B)

Table 4. Percent Faults-slip-through (FST) to FT and ST

 Project A Project B
FST to Function Test 69% 80%
FST to System Test 77% 77%

4.3. Average Fault Cost

When estimating the average fault cost for different
phases at the department, expert judgments were used
since neither was the fault cost reported directly into the
fault reporting system nor was the time reporting system
feasible to use for the task. In practice, this means that the
persons that were knowledgeable in each area estimated
the average fault cost. Table 5 presents the result of the
estimations. For example, a fault costs 13 times more in
System Test (ST) than in Implementation (Imp). In the
table, the cost estimates only include the time required for
reporting, fixing and re-testing each fault, which means
that there might have been additional costs such as the
cost of performing extra bug-fix deliveries to the test
department. Such a cost is hard to account for since the
amount of deliveries required is not directly proportional
to the amount of faults, i.e. it depends on the fault
distributions over time and the nature of the faults. The
reason why FiT_7-12 was estimated to have the same cost

as FiT+6 was because the system was still expected to be
in field tests although live usage in reality actually might
already have started. Further, during the first 12 months
after the field tests have started, few systems have been
installed although the system becomes available for live
usage already during this period. That is, the fault cost
rises when more installed systems need to be patched,
but, in reality, this does not take any effect until after
FiT_7-12.

Table 5. Estimated average fault-cost/phase (relative cost)

Phase found Imp IT FT ST FiT+6 FiT_7-12
Average cost/fault 1 2.5 8.2 13 17 17

4.4. Improvement Potential

Table 6 and Table 7 present the improvement
potential of the two studied projects from the fault
statistics provided in Sections 4.2 and 4.3, calculated
according to the method provided in Section 3.1. As can
be seen in both tables, faults-slip-through from
Implementation comprised a significant proportion of the
improvement potential (85, 86%); therefore, this is
foremost where the department should focus their
improvement efforts. Further, in project B, all the test
phases had a significant improvement potential, e.g. FT

could be performed at a 32 percent lower cost by
avoiding the faults-slip-through to it. On the contrary,
project A had more diverse fault distributions regarding
phase found. The reason for this is mainly due to
overlapping test phases (further discussed in Section 4.2).
Finally, it should also be noted that the total improvement
potential in relation to fault origin phase (rightmost

columns) were similar for both projects, which
strengthens the assumption that the improvement
potential is foremost process related, i.e. the faults-slip-
through did not occur due to certain product problems or
accidental events in the projects.

Table 6. Percent improvement potential (Project A)

 Phase found
Phase belonging FT ST FiT+6 FiT_7-12 Total potential

/origin phase
Imp 37 5.6 37 5.4 85
IT 2.2 0.0 0.5 0.5 3.2
FT 0.0 0.7 10.1 0.6 11
ST 0.0 0.0 0.8 0.1 0.9
Total potential/test phase 39 6.3 48 6.6 100

Table 7. Percent improvement potential (Project B)

 Phase found
Phase belonging FT ST FiT+6 FiT_7-12 Total potential

/origin phase
Imp 30 16 12 28 86
IT 1.7 2.5 2.2 0.0 6.4
FT 0.0 1.6 1.3 2.0 4.9
ST 0.0 0.0 1.5 0.8 2.3
Total potential/test phase 32 20 17 30 100

5. Discussion

This section discusses the proposed method and the results of applying it. First, Section 5.1 presents a few lessons learned
from defining and applying the central part of the method, i.e. the faults-slip-through measure. After that, Section 5.2
describes observed implications of the results. Finally, Section 5.3 discusses the validity threats to the results.

5.1. Faults-slip-through: Lessons learned

Applying faults-slip-through in an industrial environment gave several experiences regarding what works and not.
First of all, creating the definition resulted in a few lessons learned:
• Start with defining the test strategy if it is not already clearly specified. That is, there is a direct mapping between

what types of tests a phase should cover and which faults should be found when executing those tests.
• Specify the definition after the goal test strategy to reach within a few years time, not the current situation. This is

very important to make the measure possible to improve against and to keep the definition stable. If the definition is
changed between each project, the projects are not possible to compare against each other.

• Create the definition iteratively, i.e. develop a suggestion, test it on a set of faults, and then refine it iteratively until
satisfactory. The reason for this is because it is during practical usage possible flaws are found, especially fault types
that the involved people forgot to include in the definition.
When the definition was created, the measure was also added to the fault reporting process, i.e. to make sure that it

would be reported when correcting the faults so that a post-mortem analysis would not be needed after the next project.
Experiences from doing this gave the following major lessons learned:
• The developers fixing the fault should specify the faults-slip-through measure in the fault reports. Testers can be

good to use as support in some situations but in our experience, it is the developers that knows best in most cases.
However, the later test phase a fault is found in, the more influence should the testers have since they know that area
better. Further, the testers are always good to have as a point of validation to make sure that the value was reported
correctly.

• Make sure to educate the developers and testers properly so that they have a common view on how to use it.
Inevitably, there is a degree of subjectiveness in the definition but creating a common mindset can minimize this.
Additionally, the first time the measure is applied in a project, someone that took part in creating the definition should
validate the reported values to verify that everyone understood the measure correctly.
Make sure that the values are easy to follow up, i.e. automate the data analysis as much as possible, e.g. generate the

faults-slip-through results on a webpage or make the data easy to generate into a spreadsheet.

5.2. Implications of the Results

The primary implication of the results is that they provide important input when determining the Return On
Investment (ROI) of suggested process improvements. That is, since software process improvement is about reducing
costs, the expected ROI needs to be known; otherwise, managers might not want to take the risk to allocate resources for
handling upfront costs that normally follow with improvements. Additionally, the results can be used for making
developers understand why they need to change their ways of working, i.e. a quantified improvement potential motivates
the developers to cooperate (Tanaka et al. 1995).

Improvement actions regarding the issues resulting in the largest costs were implemented in subsequent projects, e.g.
more quality assurance in earlier phases. Besides shortening the verification lead-time, the expected result of decreased
faults-slip-through percentages was to improve the delivery precision since the software process becomes more reliable
when many faults are removed in earlier phases (Tanaka et al. 1995). The projects using the method will be studied as
they progress.

An unanticipated implication of introducing the faults-slip-through measure was that it became a facilitator for
discussing and agreeing on what to test when, e.g. improvement of test strategies. This implies that the measure could
serve as a driver for test process improvement. Finally, the definition turned out to be a good support for driving test
process alignment work, i.e. by making different projects and products adhere to the same faults-slip-through definition.
That is, it provides a way to specify how to work and then follow up if this way of working is achieved.

5.3. Validity Threats to the Results

When conducting an empirical industry study, the environment cannot be controlled to the same extent as in isolated
research experiments. In order to be able to make a correct interpretation of the results presented in Section 4, one should
be aware of threats to the validity of them. As presented below, the main validity threats to this case study concern
conclusion, internal, and external validity (Wohlin et al. 2003). Construct validity is not relevant in this context since the
case study was conducted in an industrial setting.

Conclusion validity concerns whether it is possible to draw correct conclusions from the results, e.g. reliability of the
results (Wohlin et al. 2003). The threats to conclusion validity are as follows. First, in order to be able to draw
conclusions from the results, the department must have a common view on which phase each fault should belong to. That
is, managers and developers should together agree on which fault types that should be considered as faults-slip-through
and not. At the studied department, this was managed by having workshops where checklists for how to estimate fault-
slip-through were developed. However, continuous improvements and training are required in the first projects in order to
ensure that everyone have the same view on how to make the estimations. Further, regarding the average fault cost for
different phases, the result was obtained through expert judgments and therefore, the estimations might not exactly reflect
the reality. However, this was minimized by asking as many ’experts’ as possible, i.e. although there might be deviations,
the results were good enough to measure the improvement potential from and hence use as basis for decisions. However,
in the future, direct fault cost measures should be included in the fault reports so that this uncertainty is removed. Finally,
since the improvement potential is calculated from the faults-slip-through measure and the average fault cost measure, the
accuracy of the improvement potential is only dependent on the accuracy of the other measures.

Internal validity concerns how well the study design allows the researchers to draw conclusions from causes and
effects, i.e. causality. For example, there might be factors that affect the dependent variables (e.g. fault distributions)
without the researchers knowing about it (Wohlin et al. 2003). In the case study presented in Section 4, all faults were
post-classified by one researcher, which thereby minimized the risk for biased or inconsistent classifications. Another
threat to internal validity is whether certain events that occurred during the studied projects affected the fault distribution,
i.e. events that the researchers were not aware of. This was managed through workshops with project participants where
possible threats to the validity of the results were put forward. Additionally, since two projects were measured, the
likelihood of special events that affected the results without being noticed decreased. That is, the obtained improvement

potentials of the two studied projects were very similar (85 and 86%), which indicates that the causes of the results were
directly related to the projects’ common denominator, i.e. that they used the same tests process. The final validity threat is
about the possibility that a fault might actually be found before it should have been found. In the case study projects, such
faults were considered not to affect the results because they were very rare, i.e. they constituted less than one percent of
the total amount of faults. Therefore, these faults were classified as non-slips but not treated specially in any other way.

External validity concerns whether the results are generalizable or not (Wohlin et al. 2003). In the performed case
study, the results are not fully generalizable since they are dependent on the studied department having certain products,
processes, and tools. However, since two similar projects were studied and gave similar fault distributions, the results are
at least valid within the context of the department. That is, the results are generalizable as long as the context is the same
but the generalizability decreases more and more the less alike the considered context is. Further, the results on average
fault costs in different phases (see Table 5) acknowledge previous claims in that faults are significantly more expensive to
find in later phases (Boehm 1983, Shull et al. 2002). Nevertheless, in this paper, the main concern regarding external
validity is whether the method used for obtaining the results is generalizable or not. Since the method contains no context
dependant information, there are no indications in that there should be any problems in applying the method in other
contexts. Thus, the method can be replicated in other environments.

6. Conclusions

This paper presents and validates a method for measuring the efficiency of the software test process. The main objective
of the paper was to answer the following research question:
How can fault statistics be used for assessing a test process and quantifying the improvement potential of it in a software
development organization?

The method developed for answering the research question determines the improvement potential of a software
development organization through the following three steps:
(1) Determine which faults that could have been avoided or at least found earlier, i.e. faults-slip-through.
(2) Determine the average cost of faults found in different phases.
(3) Determine the improvement potential from the measures in (1) and (2), i.e. measure the cost of not finding the

faults in the right phase.
The practical applicability of the method was determined by applying it on two industrial software development

projects. In the studied projects, potential improvements were foremost identified in the implementation phase, e.g. the
implementation phase inserted, or did not capture faults present at least, too many faults that slipped through to later
phases. For example, in the two studied projects, the Function Test phase could be improved by up to 39 and 32 percent
respectively by decreasing the amount of faults that slipped through to it. Further, the implementation phase caused the
largest faults-slip-through to later phases and thereby had the largest improvement potential, i.e. 85 and 86 percent in the
two studied projects.

The measures obtained in this report provide a solid basis for where to focus improvement efforts. However, in further
work, the method could be complemented with investigations on causes of why faults slipped though the phase where
they should have been found. For example, the distribution of faults-slip-through should be related to the underlying test
activities in order to be able to focus more efforts on specific test activities that had a high faults-slip-through.

7. Acknowledgements

This work was funded jointly by Ericsson AB and The Knowledge Foundation in Sweden under a research grant for the
project "Blekinge - Engineering Software Qualities (BESQ)" (http://www.bth.se/besq).

8. References

Basili V. 1994. Software Modeling and Measurement: The Goal Question Metric Paradigm. Computer Science Technical Report Series.
CS-TR-2956 UMIACS-TR-92-96. Technical report. University of Maryland.
Berling T, Thelin T. 2003. An Industrial Case Study of the Verification and Validation Activities. Proceedings of the Ninth
International Software Metrics Symposium. IEEE. 226-238
Bhandari I, Halliday M, Tarver E, Brown D, Chaar J, Chillarege R. 1993. A Case Study of Software Process Improvement During
Development. IEEE Transactions on Software Engineering 19(12): 1157-1171.

Biehl R. 2004. Six Sigma for Software. IEEE Software 21(2): 68-71.
Boehm B. 1983. Software Engineering Economics. Prentice-Hall: NJ, U.S.A.
Chillarege R, Prasad K. 2002. Test and development process retrospective - a case study using ODC triggers. Proceedings of the
International Conference on Dependable Systems and Network 669-678. IEEE.
Cook E, Votta L, Wolf L. 1998. Cost-Effective Analysis of In-Place Software Processes. IEEE Transactions on Software Engineering
24(8): 650-662.
Damm L-O, Lundberg L, Wohlin C. 2004. Determining the Improvement Potential of a Software Development Organization through
Fault Analysis: A Method and a Case Study. Proceedings of the 11th International Conference on Software Process Improvement 138-
149. Lecture Notes in Computer Science 3281. Springer-Verlag.
Deming E W. Out of the Crisis. The MIT Press: Cambridge, MA, USA. ISBN 0-262-54115-7.
Glass R. 2004. Some Heresy Regarding Software Engineering. IEEE Software 21(4): 104-107.
Grady R. 1992. Practical Software Metrics for Project Management and Process Improvement. Prentice Hall.
Hevner A. 1997. Phase Containment for Software Quality Improvement. Information and Software Technology 39: 867-877.
IEEE 1998. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable Software. IEEE/ANSI Standard
982.2-1988.
Jakobsen A. 1998. Bottom up Process Improvement Tricks, IEEE Software 15(3): 64-68.
Kaplan S, Norton D. 1996. The Balanced Scorecard, Harvard Business School Press. Boston, MA, U.S.A.
Kitchenham B, Pfleeger S, Pickard L, Jones P, Hoaglin D, El Emam K, Rosenberg J. 2002. Preliminary Guidelines for Empirical
Research in Software Engineering. IEEE Transactions on Software Engineering 28(8): 721-734.
Leszak M, Perry D, Stoll D. 2000. A Case Study in Root Cause Defect Analysis, Proceedings of the 22nd Int. Conference on Software
Engineering 428-437. ACM Press.
Mathiassen L, Pries-Heje J, Ngwenyama O. 2002. Improving Software Organizations: From Principles to Practice, Addison-Wesley,
NJ, USA.
Paulk M., Weber C, Curtis B, Chrissis M. 1995. The Capability Maturity Model: Guidelines for Improving the Software Process.
Addison Wesley Longman, Inc, MA, USA.
Shull F, Basili V, Boehm B, Brown W, Costa P, Lindwall M, Port D, Rus I, Tesoriero R, Zelkowitz M. 2002. What We Have Learned
About Fighting Defects. Proceedings of the Eight IEEE Symposium on Software Metrics 249-258.
SW-CMM. http://www.sei.cmu.edu/cmm/cmm.html. Last Accessed: 2005-02-04.
Tanaka T, Sakamoto K, Kusumoto S, Matsumoto K, Kikuno T. 1995. Improvement of Software Process by Process Description and
Benefit Estimation. Proceedings of the 17th International Conference on Software Engineering 123-132, ACM.
Tian J. 2001. Quality Assurance Alternatives and Techniques: A Defect-Based Survey and Analysis. Software Quality Professional
3(3): 6-18. ASQ.
Wohlwend H, Rosenbaum S. 1993. Software Improvements in an International Company. Proceedings of the 15th International
Conference on Software Engineering 212-220. IEEE Computer Soc. Press.
Wohlin C, Höst M, Henningsson K. 2003. Empirical Research Methods in Software Engineering. In Empirical Methods and Studies in
Software Engineering: Experiences from ESERNET 7-23. Editors Reidar Conradi and Alf Inge Wang. Lecture Notes in Computer
Science. Spinger-Verlag. Germany. LNCS 2765.

Appendix A

Basic Test:
• Basic stability problems that can be detected when testing components or sub-features in isolation (including

component level load, performance, and endurance tests).
• Basic interface inconsistencies between components or within a sub-feature. That is, every component or sub-feature

should work ‘stand alone’, including error cases.
• Faulty revisions in deliveries.
• Isolated faults in scripts and output text files including for example spelling faults and not understandable text.

Integration Test:

• Basic software installation/uninstallation faults
• Faults in the current system installations that should work when starting each subsequent test phase
• Faults found in main function flows (smoke tests).

Function Test:

• Every function should work ‘stand alone’ in a simulated environment (including human interfaces)
• The system should adhere to specified protocol standards.

System Test:
• Load and stability faults (including performance, robustness, availability, load balancing, and reboot related faults)
• Faults found only when connected to “real” external systems.
• Complex multi-function faults.
• Restore and backup faults.
• Other installation faults, for example hardware related, data migration etc.

