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SUMMARY 
In market-driven development where time-to-market is of crucial importance, software development companies seek 

improvements that can decrease the lead-time and improve the delivery precision. One way to achieve this is by analyzing 
the test process since rework commonly accounts for more than half of the development time. A large reason for high 
rework costs is fault slippages from earlier phases where they are cheaper to find and remove. As input to improvements, 
this paper introduces a measure that can quantify this relationship. That is, a measure called faults-slip-through, which 
determines which faults that would have been more cost-effective to find in an earlier phase.  The method presented in 
this paper also determines the excessive costs of the faults that slipped through phases, i.e. the improvement potential. 
The method was validated through practical application in two software development projects at the telecom company 
Ericsson AB. The results of the case study determined that the implementation phase had the largest improvement 
potential in the two studied projects since it caused a large faults-slip-through to later phases, i.e. 85 and 86 percent of the 
total improvement potential of each project. 
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1. Introduction 

Reducing development costs and time-to-market while 
still maintaining a high level of product quality is 
essential for many modern software development 
organizations. These organizations seek specialized 
processes that could give them rapid improvements. 
However, they often overlook existing routinely collected 
data that can be used for process analysis (Cook et al. 
1998). One such data source is fault reports since 
avoidable rework accounts for a significant percentage of 
the total development time, i.e. between 20-80 percent 
depending on the maturity of the development process 
(Shull et al. 2002). In fact, related research states that 
fault analysis is the most promising approach to software 
process improvement (Grady 1992). 

A software development department at Ericsson AB 
develops component-based software for the mobile 
network. In order to stay competitive, they run a 
continuous process improvement program where they 
regularly need to decide where to focus the current 
improvement efforts. However, as considered a common 
reality in industry, the department is already aware of 
potential improvement areas; the challenge is to prioritize 

the areas to know where to focus the improvement work 
(Wohlwend and Rosenbaum 1993). Without such a 
decision support, it is common that improvements are not 
implemented because organizations find them difficult to 
prioritize (Wohlwend and Rosenbaum 1993). Further, if a 
suggested improvement can be supported with data, it 
becomes easier to convince people to make changes more 
quickly (Grady 1992). As stated above, fault statistics is 
one useful information source in software process 
improvement; therefore, the general research question of 
this paper is: 
How can fault statistics be used for assessing a test 
process and quantifying the improvement potential of it in 
a software development organization? 

Classification of faults from their causes, e.g. root 
cause analysis, is a commonly used approach for fault 
analysis (Leszak et al. 2000). Although root cause 
analysis can provide valuable information about what 
types of faults the process is not good at 
preventing/removing, the technique is cost intensive and 
therefore not easy to apply on larger populations of faults. 
Additionally, root cause analysis does not measure what 
the total cost of the slipped faults is. A test-oriented 
approach for fault analysis is fault trigger classification, 
which categorizes faults after which test activity that 



triggered them (Chillarege and Prasad 2002). This 
technique can be used for identifying how good a phase is 
at finding the faults it should find. However, as for root 
cause analysis, the technique cannot quantify the cost of 
faults that should have been found earlier.   

To be able to address the stated research question, this 
paper instead introduces a method in which a central part 
is a ‘faults-slip-through’ measure. That is, the faults are 
classified according to whether they slipped through the 
phase where they should have been found. This approach 
to fault classification has been used before (Basili and 
Green 1994, Hevner 1997). However, the method 
presented in this paper has two main differences. First, 
faults-slip-through focuses on when it is cost-effective to 
find each fault, it does not consider fault insertion phase. 
Second, the presented method also calculates the 
improvement potential by relating the result of the fault 
classification with the average cost of finding and 
repairing the faults. That is, the method measures the 
improvement potential by multiplying the faults-slip-
through distribution with the average benefit of finding a 
fault earlier.  

In order to validate the applicability of the method, the 
paper also provides an empirical case study where the 
method is applied on the faults reported in two finished 
development projects at Ericsson AB. The work 
presented in this paper is based on previous work on 
faults-slip-through based improvement work (Damm et 
al. 2004). The paper is outlined as follows. Section 2 
presents related work to the proposed method in this 
paper. Then, Section 3 describes the proposed method for 
how to determine the improvement potential of an 
organization. Section 4 demonstrates the applicability of 
the method through an empirical case study. Section  5 
discusses the validity and implications of the results and 
Section 6 concludes the work. 

2. Related Work 

The Capability Maturity Model (CMM) is one of the 
most widely used models for software process 
improvement (Paulk et al. 1995). The essence of this 
model and its tailored variant SW-CMM (SW-CMM) is 
for organizations to strive for achieving higher maturity 
levels and thereby become better at software 
development. However, such blueprint models have been 
criticized because they are focused on making an 
organization more structured and work according to what 
is defined to be state of the art in the model. That is, 
although state of the art models can provide some 
guidance to areas of improvement, there are no generally 
applicable solutions (Glass 2004, Mathiassen et al. 2002). 

The opposite of applying a model-based approach is 
the bottom-up approach where improvements are 
identified and implemented locally in a problem-based 

fashion (Jakobsen 1998). Originating from the widely 
recognized concept Total Quality Management (Deming 
2000), a typical bottom-up approach is the Quality 
Improvement Paradigm (QIP). In QIP, a six-step 
improvement cycle guides an organization through 
continuous improvements based on QIP (Basili and Green 
1994). From defined problem based improvements, QIP 
sets measurable goals to follow up after the 
implementation. However, QIP is more of a generic 
framework for which steps to include in an improvement 
cycle, it does not state exactly how to perform them. That 
is, in practice, the method in this paper could instead be 
included as a part of QIP, i.e. by including faults-slip-
through as an important measure to follow up with 
respect to fault cost reduction. 

Fault-oriented measures are within process assessment 
and improvement used for different purposes. That is, the 
purpose of fault analysis is to improve the process to 
make the products more fault tolerant, reduce the amount 
of introduced faults, or to prevent the faults from being 
introduced in the first place (Tian 2001). Based on a 
survey, it is concluded that the application domain and the 
current process affect which approach to prefer, but 
overall, it is most efficient to combine the three 
techniques (Tian 2001). The approach presented in this 
paper focuses on fault reduction and fault prevention. 

A widely spread fault measurement approach is ‘Six 
sigma‘, which is centered on a measure that determines 
the number of faults in relation to product size (Biehl 
2004). Further, as earlier mentioned, the measure applied 
in this paper is similar to measures used in related work, 
e.g. phase containment metrics where faults should be 
found in the same phase as they were introduced (Hevner 
1997), and goodness measures where faults should be 
found in the earliest possible phase (Berling and Thelin 
2003). In contrast to the faults-slip-through measure, 
these measures are strongly related to the notion of fault 
latency, i.e. for how long time does a fault remain in a 
product. The implication of this is that since most faults 
are inserted during analysis, design and coding, the 
measures primarily provide feedback on earlier phases 
instead of the test process. Therefore, they are not suitable 
for improvements aimed at the test process. 

Finally, related work on calculating the improvement 
potential from faults has been done before, i.e. by 
calculating the time needed in each phase when faults 
were found when supposed to in comparison to when 
they were not (Tanaka et al. 1995). Although the results 
of using such an approach are useful for estimating the 
effect of implementing a certain improvement, they 
require measurements on the additional effort required for 
removing the faults earlier. Such measurements require 
decisions on what improvements to make and estimates of 
what they cost and therefore they cannot be used as input 



when deciding in which phases to focus the 
improvements and what the real potential is. 

3. Method 

3.1. Estimation of Improvement Potential 

The purpose of this paper is to demonstrate how to 
determine the improvement potential of a development 

process from historical fault data. This section describes 
the selected method for how to achieve this through the 
following three steps: 

Table 1. Fictitious example of faults-slip-through data (nr. faults found, belonging /phase)

                           PF: 
PB: Design Impl. Function 

Test 
System 

Test Operation Total 
belonging/phase 

Design 1 1 10 5 1 18 
Impl.  4 25 18 2 49 
Function Test   15 5 4 24 
System Test    13 2 15 
Operation     0 0 
Tot. found/phase 1 5 50 41 9 106 

 
(1) Determine which faults that could have been avoided 

or at least found earlier 
(2) Determine the average cost of finding faults in 

different phases. 
(3) Determine the improvement potential from the results 

in (1) and (2). 
In this context, a fault is defined as an anomaly that 

causes a failure (IEEE 1988). The following three sub-
sections describe how to perform each of the three steps.  

3.1.1. Faults-slip-through measurement 
When using fault data as basis for determining the 

improvement potential of an organization’s development 
process, the essential analysis to perform is whether the 
faults could have been avoided or at least have been 
found earlier. As previously mentioned, the introduced 
measure for determining this is called ‘faults-slip-
through’, i.e. whether a fault slipped through the phase 
where it should have been found. The definition of it is 
similar to measures used in related studies, e.g. phase 
containment metrics where faults should be found in the 
same phase as they were introduced (Hevner 1997), and 
goodness measures where faults should be found in the 
earliest possible phase (Basili and Green 1994). The main 
difference between the faults-slip-through measure and 
the other measures is when a fault is introduced in a 
certain phase but it is not efficient to find in the same 
phase, e.g. a certain test technique might be required to 
simulate the behaviour of the function.  Then it is not a 
faults-slip-through. Figure 1 further illustrates this 
difference.  

 
Figure 1. Fault latency versus faults-slip-through 

A consequence of how faults-slip-through is measured 
is that a definition must be created to support the 
measure, i.e. a definition that specifies which faults that 
should be found in which phase. To be able to specify 
this, the organization must first determine what should be 
tested in which phase. Therefore, this can be seen as test 
strategy work. Thus, experienced developers, testers and 
managers should be involved in the creation of the 
definition. The results of the case study in Section 4.2 
further exemplify how to create such a definition. Table 1 
provides a fictitious example of faults-slip-through 
between arbitrarily chosen development phases. The 
columns represent in which phase the faults were found 
(PF) and the rows represent where the faults should have 
been found (Phase Belonging, PB). For example, 25 of 
the faults that were found in Function Test should have 
been found during implementation (e.g. through 
inspections or unit tests). Further, the rightmost column 



summarizes the amount of faults that belonged to each 
phase whereas the bottom row summarizes the amount of 
faults that were found in each phase. For example, 49 
faults belonged to the implementation phase whereas 
most of the faults were found in Function Test (50). 

3.1.2. Average Fault Cost 
When having all the faults categorized according to 

the faults-slip-through measure, the next step is to 
estimate the cost of finding faults in different phases. 
Several studies have shown that the cost of finding and 
fixing faults increases more and more the longer they 
remain in a product (Boehm 1983, Shull et al. 2002). 
However, the cost-increase varies significantly depending 
on the maturity of the development process and on 
whether the faults are severe or not (Shull et al. 2002). 
Therefore, the average fault cost in different phases needs 
to be determined explicitly in the environment where the 
improvement potential is to be determined (see a fictitious 
example in Table 2). This measure could either be 
obtained through the time reporting system or from expert 
judgments, e.g. a questionnaire where the 
developers/testers that were involved in the bug-fix give 
an estimate of the average cost. 

Table 2. Fictitious example of average fault cost/phase found 

 Design  Implementation FT* ST* Operation
Average  
fault cost 1 2 10 25 50 

*FT=Function Test, ST=System Test 

 
Expert judgments are a fast and easy way to obtain the 

measures; however, in the long-term, fully accurate 
measures can only be obtained by having the cost of 
every fault stored with the fault report when repairing it. 
That is, when the actual cost is stored with each fault 
report, the average cost can be measured instead of just 
being subjectively estimated. Further, when obtaining 
these measures, it is important not just to include the cost 
of repairing the fault but also fault reporting and re-
testing after the fault is corrected. Note that the individual 
fault cost varies depending on the type of fault. Therefore, 
estimation of an average fault cost requires a relatively 
large amount of faults to be reliable. 

3.1.3. Improvement Potential 
The third step (e.g. the improvement potential) is 

determined by calculating the difference between the cost  

of faults in relation to what the fault cost would have 
been if none of them would have had slipped through the 
phase where they were supposed to be found. Figure 2 
provides the formulas for making such a calculation and 
as presented in the table in the figure, the improvement 
potential can be calculated in a two-dimensional matrix. 
The equation in the figure provides the actual formula for 
calculating the improvement potential for each cell 
(IPxy). PFx total and PBx total are calculated by 
summarizing the corresponding row/column. As 
illustrated rightmost in the figure, the average fault cost 
(as discussed in the previous paragraph), need to be 
determined for each phase before using it in the formula 
(IPxy). In order to demonstrate how to use and interpret 
the matrix, Table 3 provides an example calculation by 
applying the formulas in Figure 2 on the fictitious values 
in Table 1 and Table 2. In Table 3, the most interesting 
cells are those in the rightmost column that summarizes 
the total cost of faults in relation to fault belonging and 
the bottom row that summarizes the total unnecessary 
cost of faults in relation to phase found.  For example, the 
largest improvement potential is in the implementation 
phase, i.e. the phase triggered 710 hours of unnecessary 
costs in later phases due to a large faults-slip-through 
from it. Note that taking an action that removes the faults-
slip-through from the implementation phase to later 
phases will increase the fault cost of the implementation 
phase, i.e. up to 45 hours (1 hour/fault times 49 faults 
minus 4). Further, System Test is the phase that suffered 
from the largest excessive costs due to faults slipped 
through (609 hours). However, when interpreting such 
excessive costs, one must be aware of that some sort of 
investment is required in order to get rid of them, e.g. by 
adding code inspections. Thus, the potential gain is 
probably not as large as 609 hours. Therefore, the primary 
usage of the values is to serve as input to an expected 
Return On Investment (ROI) calculation when 
prioritizing possible improvement actions. 

When measured in percent, the improvement potential 
for a certain phase equals the improvement potential in 
hours divided with the total improvement potential (e.g. 
in the example provided in Table 3, the fault slippage to 
System Test can be decreased by = 609/1255=49%). In 
the case study reported in the next section, the 
measurements are provided in percent (due to 
confidentiality reasons). 

 
 



Figure 2. Matrix formula for calculation of improvement potential 

Table 3. Example of calculation of improvement potential (hours) 

4. Results from Applying the Method 

This section describes the case study application of the 
previously defined described method. First, Section 4.1 
provides an overview of the case study environment. 
After that, sections 4.2-4.4 describes the result of 
applying the three steps of the method.  

4.1. Case Study Setting 

The applicability of the described method was 
evaluated by using it on the faults reported in two projects 
at a department at Ericsson AB. To be able to understand 
and interpret the results reported from these two projects, 
the contextual setting of the case study needs to be well 
described (Kitchenham et al. 2002).  

The projects developed functionality to be included in 
new releases of two different telecom products. Hence, 
previous versions of the products were already in full 
operation at customer sites. The products are launched as 
software services operating in mobile networks. Further, 
the projects used the same processes and tools and the 
products developed in the projects were developed on the 
same platform (i.e. the platform provides a component-
based architecture and a number of platform components 
that are used by both products). The products were 

developed mainly in C++ except for a Java-based 
graphical user interface that constitutes minor parts of 
each product. Apart from the platform components, each 
product consists of about 10-30 components and each 
component consists of about 5-30 classes. The process 
used for developing the products was based on an 
incremental approach including the traditional 
development phases: analysis, design, implementation, 
and test. Details about the phases relevant to the case 
study are described in Section 4.2. The participants in the 
projects had different experience and skill levels. 
However, most of the participants had several years of 
experience in software development within the 
application domain including experience with the tools 
and processes used by the organization. In fact, at most 
10 percent of them had less than one year of practical 
experience. Further, most of the participants had at least a 
bachelor degree in computer science or the like.  

The reason for studying more than one project was to 
be able to strengthen the validity of the results, i.e. two 
projects that were developed in the same environment and 
according to the new development process should provide 
similar results (except for known events in the projects 
that affected the results). Further, two projects were 
chosen since the selected projects were the only recently 
finished projects and because earlier finished projects 
were not developed according to the same process. 

 
                   PF: 
PB Design Impl. Function Test System Test Operation Total 

PB/phase 

Design 
1*1-1*1 

= 0 
1*2-1*1 

= 1h 
10*10-10*1

= 90h 
5*25-5*1 

= 120 
1*50-1*1 

= 49 260h 

Impl. 
 4*2-4*2 

= 0 
25*10-25*2

= 200h 
18*25-18*2

= 414h 
2*50-2*2 

= 96h 710h 

Function Test 
  15*10-15*10

= 0 
5*25-5*10 

= 75h 
4*50-4*10 

= 160h 235h 

System Test 
  

 
13*25-13*25

= 0 
2*50-2*25 

= 50h 50h 
Operation     0 0h 
Total  
potential/ PF  1h 290h 609h 355h 1255h 



Thereby, it was the two selected projects that could be 
considered as representative for the organization. 

The reported faults originated from the test phases 
performed by the test unit at the department, i.e. faults 
found earlier were not reported in a written form that 
could be post-analyzed. Further, during the analysis, 
some faults were excluded either because they were 
rejected or because they did not affect the operability of 
the products, e.g. opinion about function, not 
reproducible faults, and documentation faults. Finally, 
requirements faults were not reported in the fault 
reporting system. Instead, they were handled separately as 
change requests. 

4.2. Faults-Slip-Through 

Figure 3 and Figure 4 present the average percent faults-
slip-through in relation to percent faults found and 
development phase from two finished projects at the 
department. The faults-slip-through measure was not 
introduced until after the project completions, and hence 
all the fault reports in the projects studied needed to be 
classified according to the method described in Section 
3.1 in retrospect. The time required for performing the 
classification was on average two minutes/fault. Actually, 
several faults could be classified a lot faster but some of 
them took a significantly longer time since these fault 
reports lacked information about the causes of the faults. 
In those cases, the person that repaired the fault needed to 
be consulted about the cause. In the future, this overhead 
work could be avoided by making sure that the faults are 
classified on the fly instead. Section 5.1 describes how 
this was achieved at the studied department. In order to 
obtain a consensus on what faults should be considered as 
faults-slip-through and not, a workshop with key 
representatives from different areas at the department was 
held. The output from the workshop was a definition of 
which faults that should belong to which phase. Appendix 
A presents the obtained definition for each phase. 
However, note that the two last phases below (FiT+6, 
FiT_7-12) were not included in the definition since at that 
stage all faults were considered as faults-slip-through. 
When assigning faults to different phases, the possible 
phases to select among were the following: 
Implementation (Imp): Faults found when implementing 
the components, e.g. coding faults found during code 
inspections and unit tests. 

Integration Test (IT): Faults found during primary 
component integration tests, e.g. installation faults and 
basic component interaction faults. 
Function Test (FT): Faults found when testing the 
features of the system. 
System Test (ST): Includes integration with external 
systems and testing of non-functional requirements. 
Field Test + 6 months (FiT+6): During this period, the 
product is tested in a real environment (e.g. installed into 
a mobile network), either at an internal test site or 
together with a customer.  During the first six months, 
most issues should be resolved and the product then 
becomes accepted for full operation. 
Field Test 7-12 months (FiT_7-12): Same as FiT+6; 
however, after 6 months of field tests, live usage of the 
product has normally begun. 

 

Regarding the possible phases to select between, it 
could have been possible to include earlier phases such as 
requirements analysis and system design. However, since 
the studied department wanted to focus on feedback on 
the test phases when using this measure, earlier phases 
were excluded.  

As can be seen in the figures below, several faults 
belonged to the implementation phase in the two projects, 
i.e. 63 and 68 percent respectively. Further, in project A 
(Figure 3), many faults were found in FiT+6 (29%). The 
primary reason for this was that the field tests started 
before ST was completed, i.e. the phases were 
overlapping which resulted in that ST continued to find 
faults during FiT+6. These ST faults could for practical 
reasons only be classified as FiT+6 faults. 

The figures below illustrate the faults-slip-through 
distributions of the projects in a good way. However, 
sometimes it is more feasible to present the measure as 
the total amount of faults-slip-through to a certain phase, 
e.g. at the studied department the measure was to be used 
as goal values in balanced scorecards (Kaplan and Norton 
1996). That is, in this case only a few key goal measures 
were requested and therefore, a multi-valued graph was 
not feasible. Table 4 describes how this was applied at 
Ericsson AB. For example, in the table, 69, and 80 
percent faults-slip-through to FT was calculated as a sum 
of all faults that should have been found in earlier 
previous phases divided with the number of faults found 
in FT. 

 



 

Figure 3. Percent faults-slip-through in relation to percent faults found and development phase (Project A)

 
 

Figure 4. Percent faults-slip-through in relation to percent faults found and development phase (Project B)

Table 4. Percent Faults-slip-through (FST) to FT and ST 

 Project A Project B 
FST to Function Test 69% 80% 
FST to System Test 77% 77% 

4.3. Average Fault Cost 

When estimating the average fault cost for different 
phases at the department, expert judgments were used 
since neither was the fault cost reported directly into the 
fault reporting system nor was the time reporting system 
feasible to use for the task. In practice, this means that the 
persons that were knowledgeable in each area estimated 
the average fault cost. Table 5 presents the result of the 
estimations. For example, a fault costs 13 times more in 
System Test (ST) than in Implementation (Imp). In the 
table, the cost estimates only include the time required for 
reporting, fixing and re-testing each fault, which means 
that there might have been additional costs such as the 
cost of performing extra bug-fix deliveries to the test 
department. Such a cost is hard to account for since the 
amount of deliveries required is not directly proportional 
to the amount of faults, i.e. it depends on the fault 
distributions over time and the nature of the faults. The 
reason why FiT_7-12 was estimated to have the same cost 

as FiT+6 was because the system was still expected to be 
in field tests although live usage in reality actually might 
already have started. Further, during the first 12 months 
after the field tests have started, few systems have been 
installed although the system becomes available for live 
usage already during this period. That is, the fault cost 
rises when more installed systems need to be patched, 
but, in reality, this does not take any effect until after 
FiT_7-12.  

Table 5. Estimated average fault-cost/phase (relative cost)  

Phase found Imp IT FT ST FiT+6 FiT_7-12
Average cost/fault 1 2.5 8.2 13 17 17 

4.4. Improvement Potential 

Table 6 and Table 7 present the improvement 
potential of the two studied projects from the fault 
statistics provided in Sections 4.2 and 4.3, calculated 
according to the method provided in Section 3.1. As can 
be seen in both tables, faults-slip-through from 
Implementation comprised a significant proportion of the 
improvement potential (85, 86%); therefore, this is 
foremost where the department should focus their 
improvement efforts. Further, in project B, all the test 
phases had a significant improvement potential, e.g. FT 



could be performed at a 32 percent lower cost by 
avoiding the faults-slip-through to it. On the contrary, 
project A had more diverse fault distributions regarding 
phase found. The reason for this is mainly due to 
overlapping test phases (further discussed in Section 4.2). 
Finally, it should also be noted that the total improvement 
potential in relation to fault origin phase (rightmost 

columns) were similar for both projects, which 
strengthens the assumption that the improvement 
potential is foremost process related, i.e. the faults-slip-
through did not occur due to certain product problems or 
accidental events in the projects.  
 

Table 6. Percent improvement potential (Project A)

                       Phase found 
Phase belonging FT ST FiT+6 FiT_7-12 Total potential 

/origin phase 
Imp 37 5.6 37 5.4 85 
IT 2.2 0.0 0.5 0.5 3.2 
FT 0.0 0.7 10.1 0.6 11 
ST 0.0 0.0 0.8 0.1 0.9 
Total potential/test phase 39 6.3 48 6.6 100 

Table 7. Percent improvement potential (Project B) 

                      Phase found 
Phase belonging FT ST FiT+6 FiT_7-12 Total potential 

/origin phase 
Imp 30 16 12 28 86 
IT 1.7 2.5 2.2 0.0 6.4 
FT 0.0 1.6 1.3 2.0 4.9 
ST 0.0 0.0 1.5 0.8 2.3 
Total potential/test phase 32 20 17 30 100 

5. Discussion 

This section discusses the proposed method and the results of applying it. First, Section 5.1 presents a few lessons learned 
from defining and applying the central part of the method, i.e. the faults-slip-through measure. After that, Section 5.2 
describes observed implications of the results. Finally, Section 5.3 discusses the validity threats to the results.   

5.1. Faults-slip-through: Lessons learned 

Applying faults-slip-through in an industrial environment gave several experiences regarding what works and not. 
First of all, creating the definition resulted in a few lessons learned: 
• Start with defining the test strategy if it is not already clearly specified. That is, there is a direct mapping between 

what types of tests a phase should cover and which faults should be found when executing those tests. 
• Specify the definition after the goal test strategy to reach within a few years time, not the current situation.  This is 

very important to make the measure possible to improve against and to keep the definition stable. If the definition is 
changed between each project, the projects are not possible to compare against each other.  

• Create the definition iteratively, i.e. develop a suggestion, test it on a set of faults, and then refine it iteratively until 
satisfactory. The reason for this is because it is during practical usage possible flaws are found, especially fault types 
that the involved people forgot to include in the definition. 
When the definition was created, the measure was also added to the fault reporting process, i.e. to make sure that it 

would be reported when correcting the faults so that a post-mortem analysis would not be needed after the next project. 
Experiences from doing this gave the following major lessons learned:  
• The developers fixing the fault should specify the faults-slip-through measure in the fault reports. Testers can be 

good to use as support in some situations but in our experience, it is the developers that knows best in most cases. 
However, the later test phase a fault is found in, the more influence should the testers have since they know that area 
better. Further, the testers are always good to have as a point of validation to make sure that the value was reported 
correctly.  



• Make sure to educate the developers and testers properly so that they have a common view on how to use it. 
Inevitably, there is a degree of subjectiveness in the definition but creating a common mindset can minimize this. 
Additionally, the first time the measure is applied in a project, someone that took part in creating the definition should 
validate the reported values to verify that everyone understood the measure correctly. 
Make sure that the values are easy to follow up, i.e. automate the data analysis as much as possible, e.g. generate the 

faults-slip-through results on a webpage or make the data easy to generate into a spreadsheet. 

5.2. Implications of the Results 

The primary implication of the results is that they provide important input when determining the Return On 
Investment (ROI) of suggested process improvements.  That is, since software process improvement is about reducing 
costs, the expected ROI needs to be known; otherwise, managers might not want to take the risk to allocate resources for 
handling upfront costs that normally follow with improvements. Additionally, the results can be used for making 
developers understand why they need to change their ways of working, i.e. a quantified improvement potential motivates 
the developers to cooperate (Tanaka et al. 1995).  

Improvement actions regarding the issues resulting in the largest costs were implemented in subsequent projects, e.g. 
more quality assurance in earlier phases. Besides shortening the verification lead-time, the expected result of decreased 
faults-slip-through percentages was to improve the delivery precision since the software process becomes more reliable 
when many faults are removed in earlier phases (Tanaka et al. 1995). The projects using the method will be studied as 
they progress. 

An unanticipated implication of introducing the faults-slip-through measure was that it became a facilitator for 
discussing and agreeing on what to test when, e.g. improvement of test strategies. This implies that the measure could 
serve as a driver for test process improvement. Finally, the definition turned out to be a good support for driving test 
process alignment work, i.e. by making different projects and products adhere to the same faults-slip-through definition. 
That is, it provides a way to specify how to work and then follow up if this way of working is achieved. 

5.3. Validity Threats to the Results 

When conducting an empirical industry study, the environment cannot be controlled to the same extent as in isolated 
research experiments. In order to be able to make a correct interpretation of the results presented in Section 4, one should 
be aware of threats to the validity of them. As presented below, the main validity threats to this case study concern 
conclusion, internal, and external validity (Wohlin et al. 2003). Construct validity is not relevant in this context since the 
case study was conducted in an industrial setting.  

Conclusion validity concerns whether it is possible to draw correct conclusions from the results, e.g. reliability of the 
results (Wohlin et al. 2003). The threats to conclusion validity are as follows. First, in order to be able to draw 
conclusions from the results, the department must have a common view on which phase each fault should belong to. That 
is, managers and developers should together agree on which fault types that should be considered as faults-slip-through 
and not. At the studied department, this was managed by having workshops where checklists for how to estimate fault-
slip-through were developed. However, continuous improvements and training are required in the first projects in order to 
ensure that everyone have the same view on how to make the estimations. Further, regarding the average fault cost for 
different phases, the result was obtained through expert judgments and therefore, the estimations might not exactly reflect 
the reality. However, this was minimized by asking as many ’experts’ as possible, i.e. although there might be deviations, 
the results were good enough to measure the improvement potential from and hence use as basis for decisions. However, 
in the future, direct fault cost measures should be included in the fault reports so that this uncertainty is removed. Finally, 
since the improvement potential is calculated from the faults-slip-through measure and the average fault cost measure, the 
accuracy of the improvement potential is only dependent on the accuracy of the other measures.  

Internal validity concerns how well the study design allows the researchers to draw conclusions from causes and 
effects, i.e. causality. For example, there might be factors that affect the dependent variables (e.g. fault distributions) 
without the researchers knowing about it (Wohlin et al. 2003). In the case study presented in Section 4, all faults were 
post-classified by one researcher, which thereby minimized the risk for biased or inconsistent classifications. Another 
threat to internal validity is whether certain events that occurred during the studied projects affected the fault distribution, 
i.e. events that the researchers were not aware of. This was managed through workshops with project participants where 
possible threats to the validity of the results were put forward. Additionally, since two projects were measured, the 
likelihood of special events that affected the results without being noticed decreased. That is, the obtained improvement 



potentials of the two studied projects were very similar (85 and 86%), which indicates that the causes of the results were 
directly related to the projects’ common denominator, i.e. that they used the same tests process. The final validity threat is 
about the possibility that a fault might actually be found before it should have been found. In the case study projects, such 
faults were considered not to affect the results because they were very rare, i.e. they constituted less than one percent of 
the total amount of faults. Therefore, these faults were classified as non-slips but not treated specially in any other way.  

External validity concerns whether the results are generalizable or not (Wohlin et al. 2003). In the performed case 
study, the results are not fully generalizable since they are dependent on the studied department having certain products, 
processes, and tools. However, since two similar projects were studied and gave similar fault distributions, the results are 
at least valid within the context of the department. That is, the results are generalizable as long as the context is the same 
but the generalizability decreases more and more the less alike the considered context is. Further, the results on average 
fault costs in different phases (see Table 5) acknowledge previous claims in that faults are significantly more expensive to 
find in later phases (Boehm 1983, Shull et al. 2002). Nevertheless, in this paper, the main concern regarding external 
validity is whether the method used for obtaining the results is generalizable or not. Since the method contains no context 
dependant information, there are no indications in that there should be any problems in applying the method in other 
contexts. Thus, the method can be replicated in other environments. 

6. Conclusions 

This paper presents and validates a method for measuring the efficiency of the software test process. The main objective 
of the paper was to answer the following research question: 
How can fault statistics be used for assessing a test process and quantifying the improvement potential of it in a software 
development organization? 

The method developed for answering the research question determines the improvement potential of a software 
development organization through the following three steps: 
(1) Determine which faults that could have been avoided or at least found earlier, i.e. faults-slip-through. 
(2) Determine the average cost of faults found in different phases. 
(3) Determine the improvement potential from the measures in (1) and (2), i.e. measure the cost of not finding the 

faults in the right phase.  
The practical applicability of the method was determined by applying it on two industrial software development 

projects. In the studied projects, potential improvements were foremost identified in the implementation phase, e.g. the 
implementation phase inserted, or did not capture faults present at least, too many faults that slipped through to later 
phases.  For example, in the two studied projects, the Function Test phase could be improved by up to 39 and 32 percent 
respectively by decreasing the amount of faults that slipped through to it. Further, the implementation phase caused the 
largest faults-slip-through to later phases and thereby had the largest improvement potential, i.e. 85 and 86 percent in the 
two studied projects. 

The measures obtained in this report provide a solid basis for where to focus improvement efforts. However, in further 
work, the method could be complemented with investigations on causes of why faults slipped though the phase where 
they should have been found. For example, the distribution of faults-slip-through should be related to the underlying test 
activities in order to be able to focus more efforts on specific test activities that had a high faults-slip-through. 
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Appendix A 

Basic Test: 
• Basic stability problems that can be detected when testing components or sub-features in isolation (including 

component level load, performance, and endurance tests).  
• Basic interface inconsistencies between components or within a sub-feature. That is, every component or sub-feature 

should work ‘stand alone’, including error cases.  
• Faulty revisions in deliveries. 
• Isolated faults in scripts and output text files including for example spelling faults and not understandable text. 

 
Integration Test: 

• Basic software installation/uninstallation faults 
• Faults in the current system installations that should work when starting each subsequent test phase 
• Faults found in main function flows  (smoke tests). 

 
Function Test: 

• Every function should work ‘stand alone’ in a simulated environment (including human interfaces) 
• The system should adhere to specified protocol standards. 
 

System Test: 
• Load and stability faults (including performance, robustness, availability, load balancing, and reboot related faults) 
• Faults found only when connected to “real” external systems. 
• Complex multi-function faults. 
• Restore and backup faults. 
• Other installation faults, for example hardware related, data migration etc. 
 


