

T. Thelin, P. Runeson and C. Wohlin, "Prioritised Use Cases as a Vehicle for
Software Inspections", IEEE Software, July/August, pp. 30-33, 2003.

Prioritized Use Cases as a Vehicle for Software Inspections

Thomas Thelin, Per Runeson
Dept. of Communication Systems,

Lund University
Box 118, SE-221 00 LUND, Sweden

{thomas.thelin, per.runeson}@telecom.lth.se

Claes Wohlin
Dept. of Software Eng. and Computer Science

Blekinge Institute of Technology
Box 520, SE-372 25 Ronneby, Sweden

claes.wohlin@bth.se

Principles from software inspections, use cas-
es and operational profile testing are com-
bined into the usage-based reading technique
(UBR). The goal is to provide an efficient
reading technique for software inspections,
which takes the user viewpoint on the software
and the faults it may contain. The user reads,
for example, a design document guided by pri-
oritized use cases. An experimental evaluation
shows that the UBR method is more effective
and efficient in finding faults, critical to the
user, compared to checklist-based methods.

INSPECTIONS AND USE CASES

Introduction
Software inspections have achieved quite
some interest, since its first presentation by
Michael Fagan in 1976 [1]. Inspection is a
static verification and validation technique,
which can be applied to any kind of artefact
prepared in software development. There is no
need for dynamic execution of the artefact.
The steps of an inspection process are typical-
ly 1) overview of the artefact to be inspected,

2) individual preparation, where each review-
ers reads the artefact, 3) compilation of the
findings into one list of issues, 4) inspection
meeting, and finally 5) rework and follow-up
(See Figure 1 and [2]). Inspections are consid-
ered industry practice in domains where soft-
ware quality is of importance for the delivered
products. Despite the fact that much empirical
research is conducted on inspections [3], the
traditional checklist approach to inspections is
still dominating in industry [4].

Another trend in software engineering seen
during the last two decades is the turn towards
object-oriented design methods, and the appli-
cation of use cases in this context [5]. Use cas-
es and scenarios (see box Use Cases and
Scenarios) help the development turn user-fo-
cused instead of being solely technology-fo-
cused. Use cases and scenarios can, for
example, be documented in terms of UML use
case diagrams and sequence diagrams respec-
tively, or they can be documented using struc-
tured text. Use cases are generally developed
as a means for the specification of a system,

Figure 1. Inspection process

Rework and
Follow-up

CompilationOverview Preparation Meeting

but can also be used for inspection purposes
later in the development.

Furthermore, usage-based testing, or oper-
ational profile testing has contributed to set-
ting the user and usage of a system in focus of
the test activities [6]. The basic principle is
that test cases are selected according to the
frequency or probability of operational use.
Hence, the most important functions, from the
user viewpoint, are tested first and most.

Usage-Based Reading
We combine inspections, use cases/scenarios
and principles of operational profile testing
into usage-based reading (UBR) to provide an
efficient reading technique for application in
software design inspections [7][8]. The tech-
nique takes into account the fact that different
faults may have different impact on the user
perception of the product. The focus here is
primarily on design inspections, while code
inspections guided by use cases have been dis-
cussed elsewhere [9].

Independently of the inspection method
used, there is always a component of reading
the artefact under inspection, i.e. individual
preparation (see Figure 1). The predominant
technique in industry is checklist-based read-
ing [4], where a list of check items guides the
reviewers on how they should focus their at-
tention when reading.

UBR can be used for inspection of docu-
ments developed after the derivation of use
cases, e.g. requirements, design, code and test
documents. It is assumed that the use cases
and/or scenarios are defined earlier in the de-
velopment process. UBR utilizes the set of use
cases as a vehicle for focusing the inspection
effort, much the same way as a set of test cases
focus the test effort.

Method Description
The basic steps of the method are as follows
and in Figure 2:
Before inspection
1. Prioritize the use cases in order of impor-

tance from a user perspective.
In preparation
2. Select the use case with the highest prior-

ity.
3. Track the scenarios of the use case through

the document under inspection.
4. During tracking, ensure that the document

under inspection fulfils the goal of the use
case, that the needed functionality is pro-
vided, that the interfaces are correct etc.
Identify and report the issues found.

5. Select the next use case and repeat from 3.
until the time is up, or all use cases are
covered.

Method Adaptation
As the UBR method steps only cover the prep-
aration part of an inspection process, it is to be
used as an add-on to existing inspection proc-
esses. Hence, existing procedures for resource
scheduling, meetings and follow-up can be
used in conjunction with UBR. The method is
easily introduced in a development project
where use cases and scenarios are defined at a
sufficient level of detail and completeness. If
an operational profile is defined for the sys-
tem, it contains important information for the
prioritization activity.

The prioritization can, for example, be per-
formed by pair-wise comparisons, guided by
the analytic hierarchy process (AHP) [10].
AHP enables determining the consistency of
the comparisons if all pairs are compared or
can be used to finding priorities without hav-

Use Cases and Scenarios
Scenario: A sequence of steps describing an
interaction between a user and a program

Use case: A set of scenarios tied together by
a common user goal

Source: M. Fowler and K. Scott, UML Dis-
tilled, Addison Wesley, 2000.

UC3
UC1

Figure 2. Usage-Based Reading

UC2
Design
1. Overview

2. Object A

3. Object B

A B C

1

2

4

3

5

ing to explicitly to define the relations be-
tween all pairs of use cases.

If the detailed scenarios are available, it is
beneficial over having only the use case de-
scription, but it is not shown to be worth the
effort of developing the scenarios solely for
the UBR inspection [11].

EXPERIMENTAL EVALUATION

The Experimental Setting
In order to evaluate the method, we launched
an experiment [12]. For a more elaborate de-
scription of the experiment, refer to [8]. We
wanted to investigate whether UBR is a better
approach applied to individual preparation
than checklist-based reading (CBR). With bet-
ter, we refer to more effective, i.e. finding
larger share of the faults, and more efficient,
i.e. finding more faults per time unit. The new
method is compared to the traditional check-
list-based reading (CBR) in a student context.
23 students in the last year of a Software En-
gineering master’s program applied the read-
ing techniques when inspecting a design
document for a taxi management system. 11
students applied UBR and 12 students applied
CBR.

The system is designed to manage a fleet of
taxis, dispatching customer orders and follow
up the transports made by each taxi driver.
The system is an academic product, scaled
down from the real application domain, but re-
alistic by being developed under interaction
with true stakeholders. The design document
is 9 pages long, containing 2300 words and 38
faults. The faults are classified as A, B or C for
crucial, important and not important from a
user’s point of view. There are 13, 14 and 11
faults of classes A, B and C respectively. The
majority of the faults (28) were found during
the initial development of the design docu-
ment and re-inserted before the experiment.
The person who developed the system seeded
eight new faults and two additional faults from
the original development were found during
the experiment, summing up to 38 faults. The
use case document comprised 24 use cases
with defined scenario sequences and alterna-

tives. The use cases and the faults were prior-
itized by different experts to ensure
independent priorities.

The students are considered sufficiently
knowledgeable and experienced to be repre-
sentative for programmers in an industrial
context. Many of the students have industrial
experience in software engineering and all of
them had run a full semester 15-member
project with real customers. They were taught
both reading techniques before the experiment
was launched. A pre-test survey was used to
ensure that the two groups were balanced re-
garding experiences and skills.

Experimental Results
The experimental evaluation shows that

UBR is significantly more efficient than CBR,
i.e. finds more faults per time unit for crucial
and important faults (classes A and B). Usage-
based reading is also significantly more effec-
tive than CBR, i.e. finds a larger share of the
faults. The data are presented in Table 1 and
Table 2, and the time spent on preparation and
inspection is presented in Table 3. The differ-
ences denoted with an asterisk (*) are statisti-
cally significant on 95% level. More details on
the data and the analysis can be found in [8].

Both groups spent about the same time on
their tasks. The UBR reviewers spent on aver-
age 6.5 minutes less in preparation and 4 min-
utes less in inspection. Nevertheless, they
found more faults.

Regarding efficiency, UBR reviewers
found twice as many crucial faults per hour
(2.6 vs. 1.3 class A faults) compared to CBR
reviewers. For the important faults, reviewers

Table 1: Efficiency data (faults per hour)

Mean Std Dev.

UBR CBR UBR CBR

All Faults* 5.6 4.1 2.0 2.0

Class A Faults* 2.6 1.3 1.0 1.1

Class B Faults 2.1 1.4 1.2 0.7

Class C Faults 0.9 1.4 0.4 0.8

Class A+B Faults* 4.7 2.8 1.8 1.7

using UBR found about 50% more faults per
hour (2.1 vs. 1.4 class B faults) than those us-
ing CBR.

Regarding effectiveness, reviewers using
UBR identified on average 21% more faults
than reviewers using CBR (0.31 vs. 0.25 for
all faults). For the crucial faults, UBR identi-
fied 75% more faults than CBR did (0.43 vs.
0.24 class A faults). CBR on the other hand
identified 63% more of the non-important
faults (0.30 vs. 0.18 class C faults). Note that
the percentages of the efficiency and effec-
tiveness may not sum to 100 due to rounding.

Based on the data, we can conclude that the
UBR method succeeds in directing the inspec-
tion effort to find the problems that are consid-
ered most important from a user’s point of
view, instead of wasting the effort on search-
ing for less important issues.

SUMMARY AND CONCLUSIONS

Usage-based reading (UBR) provides support
to the individual preparation in the inspection
process. It is based on the use cases and sce-
narios often prepared as a part of specification
and analysis efforts. Prioritized use cases
guide the reviewers in their search for issues

that may cause problems later in the develop-
ment.

To evaluate the effectiveness and efficien-
cy of UBR, an experiment was launched
where 23 students applied UBR and checklist-
based reading. It is concluded from the exper-
iment that UBR is more efficient and effective
in identifying faults, which are crucial and im-
portant from a user’s point of view. The us-
age-based reading method guides the
inspection effort towards finding the faults,
which are of most importance for improving
the user perception of the product.

The UBR method is based on information
that is available in many development
projects, i.e. use cases. The additional effort
needed is the time to prioritize the use cases to
guide the inspection effort to identify the most
important faults. The method is easily inte-
grated in an existing inspection process since
it supports the preparation part of the process
without requiring to change the compete proc-
ess. Hence, we hope that the method will pro-
vide a support in software engineering, in
striving towards better quality and more effi-
cient engineering methods.

REFERENCES

[1] M. E. Fagan, “Design and Code Inspections to
Reduce Errors in Program Development”, IBM
System Journal, 15(3):182-211, 1976.

[2] A. F. Ackerman, L. S. Buchwald and F. H. Lewski,
“Software inspections: an effective verification
process”, IEEE Software, 6(3):31-36, May 1989.

[3] A. Aurum, H. Petersson and C. Wohlin, “State-of-
the-art: Software Inspections after 25 Years”, Soft-
ware Testing Verification and Reliability,
12(3):133-154, 2002.

[4] O. Laitenberger and J-M. DeBaud, “An Encom-
passing Life Cycle Centric Survey of Software
Inspection”, Journal of Systems and Software,
50(1):5-31, 2000.

[5] I. Jacobson, M. Christerson, P. Jonsson and G.
Övergaard, Object-Oriented Software Engineering:
A Use Case Driven Approach, Addison-Wesley,
USA, 1992.

[6] Musa, J. D., “Operational profiles in software-reli-
ability engineering”, IEEE Software, 10(2):14-32,
1993.

[7] T. Thelin, P. Runeson and B. Regnell, “Usage-
Based Reading – An Experiment to Guide Review-
ers with Use Cases”, Information and Software
Technology, 43(15):925-938, 2001.

Table 2: Effectiveness data (share of faults)

Mean Std Dev.

UBR CBR UBR CBR

All Faults (38) 0.31 0.25 0.09 0.14

Class A Faults (13)* 0.43 0.24 0.17 0.21

Class B Faults (14) 0.31 0.24 0.15 0.13

Class C Faults (11) 0.18 0.30 0.08 0.21

Class A+B Faults (27)* 0.37 0.24 0.12 0.16

Table 3: Preparation and inspection time
(minutes)

Mean Std Dev.

UBR CBR UBR CBR

Preparation 53 59 20 15

Inspection 77 81 18 19

Total 130 140 15 12

[8] T. Thelin, P. Runeson and C. Wohlin, “An Experi-
mental Comparison of Usage-Based and Checklist-
Based Reading”, to appear in IEEE Transactions
on Software Engineering, 2002.

[9] A. Dunsmore, M. Roper and M. Wood, “Further
Investigation into the Development and Evaluation
of Reading Techniques for Object-Oriented Code
Inspection”, Proceedings of the International Con-
ference on Software Engineering, pp. 47-57, 2002.

[10]T. L. Saaty and L. G. Vargas, Models, Methods,
Concepts & Applications of the Analytic Hierarchy
Process, Kluwer Academic Publishers, Nether-
lands, 2001.

[11]T. Thelin, P. Runeson, C. Wohlin, T. Olsson and C.
Andersson, “How much Information is Needed for
Usage-Based Reading? – A Series of Experi-
ments”, Proceedings of the International Sympo-
sium on Empirical Software Engineering, pp. 127 -
138, 2002.

[12]C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell and A. Wesslén, Experimentation in
Software Engineering: An Introduction, Kluwer
Academic Publishers, USA, 2000.

