
1 Requirements Engineering: Setting the Context

Aybüke Aurum and Claes Wohlin

Abstract: This chapter presents a brief overview of requirements engineering and
provides an introduction to some of the critical aspects in the field. This includes
offering and understanding of the different levels of requirements involved in
requirements engineering; namely organizational, product and project level
requirements, and illustrating the role of different stakeholders in requirements
engineering. The chapter also aims to demonstrate how the three parts of this book
are interrelated.

Keywords: Requirements management, business requirements, product
requirements, project requirements, stakeholders, requirements taxonomy

1.1 Introduction

The objective of this chapter is twofold. First, it aims to provide a brief
introduction to requirements engineering and secondly it aims to set a common
context for the other chapters of the book. This introductory chapter is provided to
set the stage for the remaining chapters and nightlight to some of the important
areas covered by this book. The remaining chapters require a basic understanding
of requirements engineering to benefit from the deeper insights provided in each
of the other chapters. These chapters are divided into three parts, each with a
different focus as shown in the table of Contents and described briefly in the
Preface.

Requirements engineering is accepted as one of the most crucial stages in
software design and development as it addresses the critical problem of designing
the right software for the customer. Requirements engineering is increasingly
becoming a set of processes that operates on different levels, including
organizational, product and project levels. Furthermore, it is a continuous process
on organizational and product levels and limited process in time on the project
level. However, most requirements engineering research to date is devoted to
handling requirements on the project level, making this the main focus of this
chapter. The different levels are revisited in Section 1.4. Requirements
engineering on the project level is the process by which the requirements for a
software project are gathered, documented and managed throughout the software
development lifecycle.

The development of a software requirements specification is widely recognized
as the bases of system functionality. Software requirements are the critical
determinants of software quality, given empirical studies showing that errors in
requirements are the most numerous in the software life-cycle and also the most
expensive and time-consuming to correct. According to the Standish group report

in 1995 [10] 52.7% of projects cost (named as challenged projects), 189% of their
original budget estimates, and only a disappointing 42% of the original features of
challenged projects were implemented. The study demonstrates that 16.1% of all
US software projects are developed on-schedule, on-budget and with all originally
planned features, while 31.1% of projects are terminated before completion. It was
also observed that the average project is delivered at approximately three times the
budget and in three times the scheduled time.

Such poor figures lead to questioning the causes of these deficiencies. Often
these problems are a result of inadequate requirements [25]. According to a survey
conducted with 350 organizations in the USA (with over 8000 projects), one third
of the projects were never completed and one half succeeded only partially. About
half of the managers that were interviewed identified poor requirements as a major
source of problems, along with other factors such as low user involvement and
unclear objectives. Similarly, according to another survey which was conducted
with 3800 organizations over 17 countries in Europe, most problems are in the
area of requirements specifications (50%) and requirements management (50%)
[18]. In 1999, the Standish group report [11] revealed three of the top ten reasons
for “challenged” projects and project failure were lack of user involvement,
unstable requirements and poor project management. In a 2001 report, while user
involvement was no longer a key concern, unstable requirements and poor project
management remained amongst the primary reasons for project failure [12].

In a more recent survey of twelve UK companies requirements problems
accounted for 48% of all software problems [20]. In one of the case studies, Tveito
and Hasvold [38] observed that there was a huge gap between the day to day
operations of a hospital and software developers’ domain knowledge of these
operations, though every year healthcare organizations spend large amounts of
money and resource on IT systems. Tveito and Hasvold argue that this gap is due
to insufficient requirements gathering and misunderstanding requirements due to
the lack of domain knowledge.

These facts and figures only depict the sad reality of “software depression”.
Furthermore, the cost of repairing requirements-related problems dramatically
increases as the software development process progresses. A study by Boehm and
Papaccio [6] revealed that it costs US$1 to locate and fix an error in the
requirements definition stage, US$5 in the design phase, US$10in the coding
phase, $20US during unit testing, and up to $200 US after system delivery. It is
therefore evident that the RE process has important ramifications for the overall
success of a software project. Although the above example dates back just over 15
years, the ratio remains the same today.

Requirements engineering is concerned with the identification of goals to be
achieved by a proposed system, the operation and conversion of these goals into
services and constraints, as well as the assignment of responsibilities for the
resulting requirements to agents such as humans, devices and software.
Requirements engineering has now moved from being the first phase in the
software development lifecycle to a key activity that spans across the entire
software development lifecycle in many organizations. New products or new
releases of products are entering the market or delivered to customers at an

increasingly fast pace. In order to improve requirements engineering processes,
current practices in the real world need to be examined. Understanding and
modeling current requirements engineering processes is an important step towards
improving requirements engineering practices and therefore increasing the success
of software projects [31].

Researchers agree that the requirements engineering process should consist of
structured and repeatable activities where both engineering and management
aspects are properly handled [39]. Unfortunately, there is a lack of agreement
regarding the appropriate requirements engineering process models to use across
different industries, as the selection of available models spans from activity-based
process models to decision-oriented paradigms, each with their own subset of
model structures.

The objective of this chapter is to provide the context in which the other
chapters of this book operate. As briefly mentioned above, this context includes an
understanding of the different process levels involved in requirements
engineering. Moreover, the different stakeholders and their respective roles in
requirements engineering must be understood. The activities involved in the
processes are presented at a high level providing the reader insight into the work
being performed as part of requirements engineering. This chapter provides a brief
introduction to some fundamental building blocks of requirements engineering to
allow the reader reap the full benefit and a clear understanding of the other
chapters.

The chapter is outlined as follows. Section 1.2 provides an introductory
background to the area of requirements engineering. This is followed by a brief
discussion about the roles of stakeholders in Section 1.3. In Section 1.4, different
levels of requirements are presented. The management of requirements is
discussed in Section 1.5 and Section 1.6 explores the future of the area. Finally,
empirical evidence is touched upon in section 1.7 and some conclusions are
presented in Section 1.8.

1.2 Background

This objective of this section is to present background information on
requirements engineering.

1.2.1 What is a Requirement?

All projects begin with a statement of requirements. Requirements are descriptions
of how a software product should perform. A requirement typically refers to some
aspect of a new or enhanced product or service. The widely cited IEEE 610.12-
1990 standard [24] defines a requirement as:

(1) “A condition or capability needed by a user to solve a problem or achieve
an objective,

(2) A condition or capability that must be met or possessed by a system or
system component to satisfy a contract, standard, specification, or other formally
imposed documents,

A documented representation of a condition or capability as in (1) or (2)”.

Therefore, requirements include not only user needs but also those arising from
general organizational, government and industry standards. Clearly, a requirement
is a collection of needs arising from the user and various other stakeholders
(general organization, community, government bodies and industry standards), all
of which must be met. Ideally, requirements are independent of design, showing
“what” the system should do, rather than “how” it should be done. However, this
is not always possible in practice That is, the meanings of “what” and “how”
differ from person to person [15].

Requirements can be classified in many ways, as illustrated in Table 1.1. While
the literature draws a distinction between different types of requirements, in
practice it is not always easy to identify such differences [3]. For example, a user
requirement concerned with security may be classified as a non-functional
requirement. However, during implementation other requirements may evolve,
which are distinguishably functional such as user authorization [37]. More
examples on this issue can be found in Chapter 6.

Table 1.1 Types of Requirements

Requirements Classification

• Functional requirements -- what the system will do
• Non-functional requirements -- constraints on the types of solutions that will

meet the functional requirements e.g. accuracy, performance, security and
modifiability

• Goal level requirements -- related to business goals,
• Domain level requirements -- related to problem area,
• Product level requirements -- related to the product,
• Design level requirements -- what to build
• Primary requirements -- elicited from stakeholders
• Derived requirements -- derived from primary requirements
Others classifications e.g.
• Business requirements versus. technical requirements,
• Product requirements versus. process requirements -- i.e. business needs versus

how people will interact with the system
• Role based requirements e.g. client requirements, user requirements, IT

requirements and security requirements

Having understood the basics of what constitutes a requirement, the next step is
to elaborate on the process used to manage and engineer requirements.

1.2.2 Requirements Engineering Process

Requirements engineering refers to all life-cycle activities related to requirements.
This includes mainly gathering, documenting and managing requirements. With
the growing awareness of the significance of requirements in the software process,
requirements engineering increasingly becomes an area of focus in software
engineering research.

Common requirements engineering activities are elicitation, interpretation and
structuring (analysis and documentation), negotiation, verification and validation,
change management and requirements tracing. There are several process models
available to describe the requirements engineering process. The requirements
engineering process is often depicted in different forms, including a linear model,
incremental model, non-linear model and spiral models. Kotonya and
Sommerville [25] suggest a conceptual linear requirements engineering process
model, which indicates iterations between activities. On the other hand, Macaulay
[30] provides a purely linear requirements engineering process model that does
not indicate the overlapping or iteration of activities, suggested by the Kotonya
and Sommerville [25] model. While some researchers tend to portray the
requirements engineering process as a linear model, non-linear models have also
been suggested. Loucopoulos and Karakostas [27] depict the requirements
engineering process as iterative and cyclical in nature. Alternatively, the spiral
model represents a sequence of activities being performed in iterations, resulting
in gradual progression requirements engineering model [5]. However, it has
implications on the requirements engineering process model. A spiral approach
would require requirements to be handled in each round in the spiral model, which
is similar to the ideas presented by Kotonya and Sommerville [25]. They provide a
second requirements engineering process model, which depicts the same
requirements engineering activities as in their linear model only occurring in a
spiral representation. The activities from the linear process model are repeated in
iterations, forming a spiral. At the end of each iteration a decision is made as to
whether to accept the requirements document or to perform a further iteration.

Results from studies of the requirements engineering processes in practice have
indicated that the systematic and incremental requirements engineering models
presented in literature may not necessarily reflect the requirements engineering
processes in current practice. Martin et al (2002), who examined the requirements
engineering process in a case by case study, found that generally projects were
handled by following a linear model, with some iteration of activities. Most of the
projects they examined followed a generally linear process until the prototyping
phase, which then resulted in an iterative process. Martin et al., [32] indicated that
the Loucopoulos and Karakostas [27] model was a good representation of the ad
hoc process and the iterative nature of prototyping, but did not show the
progression of phases. On the other hand, Nguyen and Swatman [35] found that
the requirements engineering process in their case study did not occur in a
systematic, smooth and incremental way, rather it was opportunistic, with sporadic
simplification and restructuring of the requirements model when it reached points
of high complexity. Furthermore, Houdek and Pohl [22] performed a case study in

the field but could not produce a monolithic requirements engineering process
model of requirements engineering activities, as they were too heavily intertwined
and not seen as separate tasks by the participants of the study

Requirements engineering field studies have also gathered conflicting results as
to the status of requirements engineering process standards in organizations. This
indicates that the area is not fully matured in the sense that there is not one
standard process that is universally used and accepted. Instead several different
requirements engineering processes have been presented. Kotonya and
Sommerville [25] put forward that not many organizations have a standard
requirements engineering process definition. Consistent with this, Hofmann and
Lehner [21] examined requirements engineering processes of 15 requirements
engineering teams in industry and found that most participants saw the
requirements engineering as ad hoc, with only some of the projects using an
explicitly defined requirements engineering process or customizing a company
wide requirements engineering process standard for the project. Furthermore,
studies of requirements engineering in web development projects have further
confirmed the ad hoc nature of requirements engineering [28]. In contrast to these
findings, El Emam and Madhavji [17] concluded that organizations tend to use
standard requirements engineering processes, as they are viewed as best practices.
Chatzoglou [13] used a three-phased mail-out survey to examine the requirements
engineering process in 64 projects to understand the differences between projects
with different characteristics. Particular focus was placed on human resources.
The main conclusions were that a standard process methodology should be used
but should also be tailored to the specific needs of each project. Furthermore
resources should be put into the initial iteration of the requirements engineering
process.

Since requirements engineering processes are fundamental to the success of
software projects, it is therefore no surprise that improving the requirements
engineering process can subsequently enhance the chances of developing
successful software. Prior to devising strategies for software process
improvement, research and analysis of present requirements engineering processes
must be undertaken to provide a solid grasp of current requirements engineering
practices.

1.3 The Role of Stakeholders in RE

In essence, requirements engineering aims to transform potentially incomplete,
inconsistent and conflicting stakeholder goals into a complete set of high quality
requirements. Information systems researchers define stakeholders “…as these
participants in the development process together with any other individuals,
groups or organizations whose actions can influence or be influenced by the
development and use of the system whether directly or indirectly” [36]. Typical
stakeholders are the product managers, various types of users and administrators
from the client side, and the software team members from the software

development side. This view is somewhat limiting when considering software
development for markets. The traditional view of software development, and
requirements engineering, is that of bespoke software development. This is the
situation when software is developed with a specific customer in mind and when it
is often possible to have direct contact with this one user/customer. This situation
becomes different when developing software for a market or a set of customers, in
particular if all customers are not known at the time of development. This has led
to studies of market-driven software development, where one important issue is to
identify and handle the different stakeholders under these situations. More
information on market driven requirements can be found in Chapter 13.

As software projects are becoming increasingly complex, software developers
face the challenge of identifying the goals of stakeholders who come from a
diverse range of backgrounds. It might be also very difficult to represent the
essential requirements of software in a way which is accessible to all stakeholders,
as software effectively is invisible [9]. The importance of stakeholder involvement
in requirements engineering activities is widely accepted given that accurate
identification of stakeholder needs largely determines the quality of the software
product.

One of the major problems in requirements engineering is the management of
different types of inconsistencies resulting from requirements elicitation,
modeling, specification, and prioritization activities. Inconsistencies become
particularly apparent when having different stakeholders and viewpoints, since
different stakeholders have different ways of expressing themselves and different
opinions as well as priorities. Although some researchers point out that
inconsistencies between requirements models may be desirable, as they allow
further elicitation (in capturing requirements models) and they recommend
tolerating some internal inconsistencies during requirements modeling [23, 33],
the success of requirements engineering projects depends on accurate analysis of
these perspectives for incompleteness and inconsistencies. Therefore,
requirements need to be negotiated and validated before they are documented and
developers commit to implementing them.

1.4 Different Levels of Requirements

Effective management of the software product development process contributes to
sustainable competitive advantage for software companies. This implies that
managers need to consider customers’ requirements, and business requirements, as
well as the technological opportunities which may be distinct or overlap. It is
important to stay on budget, reduce life cycle time and achieve product
performance goals, to ensure that the software requirements are aligned with
business goals. These challenges are not unique to software development and are
in fact typical of complex system products. In the age of the Internet there have
been significant changes in business environments creating more complex
demands on the technologies that support business information systems.

Consequently understanding, analyzing, modeling and managing requirements
have become equally complex. In order to deliver high quality software systems
on time and on budget, it is essential to have properly structured and controlled
requirements specifications that are understandable, comprehensive and
consistent.

Table-1.2: Requirements classification in three levels

 Strategic
Management

Tactical
Management

Operational
Management

Requirements at
organizational
level

*business
strategy

*competitiveness
*technology
* marketing
*economic value

of the product

* planned benefits
of the product

* tradeoff between
technology-push and
market-pull

Requirements at
product level

* packaging
requirements
for a specific
release

* product
architectures

* resource
management

*implementation
of a specific
release

*change management
* accommodating

syntactic or semantic
changes

* requirements
volatility

Requirements at
project level

*project planning
*feasibility study

* project
management

*validation in terms of
which requirements
will go to the next
release

The requirements engineering process is one of the main contributors to the
success of software projects. This is particularly true in a global competitive
market where time-to-market and meeting stakeholder requirements are key
success factors. Thus, improving the requirements engineering process can
significantly increase the likelihood of software project success. According to
Edwards et al., [16] contemporary software design approaches often mix business
issues with IT implementation issues to form monolithic systems that are no more
responsive to change than their predecessors. IT systems in this industry would
therefore need to be dynamic and quickly adaptable to their environments. The
current expanded perspective of software products in business has various
implications for managing software development processes, i.e. software
requirements should not be solely handled in software projects. Based on
Anthony’s [1] three level managerial decision making model, namely strategic,
tactical and operational decisions, Aurum and Wohlin [2] illustrate how to conduct
an analysis of the requirements engineering process and its underlying decision-
making processes using classical decision making frameworks. In this book, we
adopts a similar view, i.e. that the management of software requirements is subject
to organization-oriented, product-oriented and process-oriented activities and they
need to be managed at strategic, tactical and operational levels. Table 1.2

illustrates classification of software requirements in 3*3 matrixes where each cell
includes few examples of requirements activities or decisions. The three levels can
be briefly described as follows.

a) Requirements at the organizational level: The senior management team of
an organization may have strategic objectives and long-term goals in terms of
market share and so forth. The goals and strategies at the organizational level will
inevitably influence which products that an organization ought to develop. Thus,
requirements posed on products must first be evaluated on an organizational level
to ensure that the requirements are aligned with the goals and strategies of the
organization. One of the main challenges faced when successfully developing
software products is that of determining how the end product will support business
objectives.

b) Requirements at the product level. The requirements of software products
must be aligned with the business goals of the software development organization.
One of the crucial questions is how to balance customers’ concerns with
developers’ concerns. Goal modeling techniques in requirements engineering
serve as a mechanism by which one can link requirements to strategic objectives
anchored in the context of the overall business strategy model. The requirements
are typically both functional and non-functional requirements. Product
management has to ensure that the requirements are aligned with the goals and
objectives in terms of the product. This may mean selecting the requirements for
the product that are best aligned with the overall goals and strategies of the
organization.

c) Requirements at the project level. Requirements on the product level must
be packaged into parts that go into specific projects or releases of the software. It
is important that requirements are prioritized and selected based on their
fulfillment of both product and organizational goals and strategies. Requirements
may be chosen for implementation based on whether they fulfill the needs of a
specific and important customer, or whether they potentially open up a new
market segment to the organization. These requirements define the conditions
under which the project will be run, including issues related to project planning,
risk management, budget and cost.

The growth in strategic importance of IT implies that tools, techniques and
processes need to be integrated with software system requirements so that they are
aligned with the strategic business objectives and business model of the
organizations they support. Business change is a part of system development. As
systems become more integrated and involve more users from diverse
backgrounds, software developers are pressured to understand the implications of
their decisions in relation to cost/benefit analysis, particularly during early life
cycle activities [8, 19, 26]. System engineering and management literature, in
particular risk management literature, stress the importance of project planning
effort, schedule planning, cost planning, and risk assessment in product
development as being essential in the generation of products that meet customer
requirements and align with strategic business goals.

1.5 Requirements Management

The quality of a software product is largely determined by the quality of the
development process used to create it. Many projects fail due to mistakes in the
elucidation of requirements, while others fail because of the requirements have
become outdated by the time the project is delivered [9]. It is also a major
challenge to developers to determine which requirements changes will cause a
major problem in the project or the product itself [9]. Managing requirements
engineering phases is crucial to the successful development of software products.
In order to deliver high quality software systems on time and on budget it is
essential to have properly structured and controlled requirements specifications
that are understandable, comprehensive and consistent.

As mentioned above, it is important to have a good understanding of
stakeholder goals and ensure their involvement in the requirements engineering
process. The management of requirements involves establishing a shared
understanding between the stakeholders and the requirements they have specified
for inclusion in the software product. The essential practices of requirements
managements are:

• Requirements elicitation, specification and modeling: This involves
understanding the needs of stakeholders, eliciting requirements, modeling and
collecting them in a repository. This is an important stage in software
development however, for a variety of reasons, including cognitive,
communicative and motivational reasons, the requirements tend to be
incomplete and inconsistent. Therefore, there is always room for improvement
in these activities.

• Prioritization: It is not always easy for developers to decide which
requirements are important to customers. This activity assists project managers
with resolving conflicts (where customers and developers collaborate on
requirements prioritization), plan for staged deliveries, and make necessary
trade-off decisions.

• Requirements dependencies and impact analysis: It is important to
acknowledge that requirements change and that this may significantly impact
the software project [14]. Several issues such as recording decisions,
understanding the effect of business changes and the use of domain models are
yet to be addressed [29].

• Requirements negotiation: Requirements engineering is essentially a complex
communication and negotiation process involving customers, designers, project
managers and maintainers. The people, or stakeholders, involved in the process
are responsible for deciding what to do, when to do it, what information is
needed, and what tools need to be used [25]. In many situations conflict is
inherent in requirements, thus they need to be negotiated between stakeholders.
Some tools, such as Win-Win Groupware, have been developed to support
stakeholders throughout the negotiation process [7]. The requirements
negotiation activity is one of the most crucial activities in software

development as it has a great impact on the final product. In reality, this activity
is carried out in parallel with the activities mentioned above and continues until
the requirements are implemented. Further information on negotiation can be
found in Chapter 7.

• Quality assurance: The objective is to ensure that high quality requirements
are recorded in the specification document. The purpose of quality assurance is
to establish reasonable and realistic levels of confidence when writing and
managing requirements. It is important that both customers and developers are
involved in quality assurance activities in requirements engineering as they
influence the success of project. It is important to stress that quality assurance
of requirements is not only an activity in the requirements phase in projects.
Quality assurance must be addressed throughout the software life cycle.
Requirements should be traced throughout development and the quality
assured, for example, through inspections, reviews and testing.

1.6 New Trends and the Next Practice

The technological improvements in the global market are closely related to
business environments. New concepts such as enterprise systems, e-business and
telecommunications have led to new trends in research for researchers and
practitioners. Furthermore, the complexity of working in a distributed and
heterogeneous environment is causing profound changes in the skills needed and
the technology used to develop and maintain software applications. In this ever-
changing business and technology environment, new trends have started emerging
and have caused fundamental shifts in software development. In a similar fashion,
requirements engineering has begun to evolve from its traditional role, as a mere
front-end in the software development life cycle, towards becoming a key focus in
the software development process; a process that requires a more precise
understanding of the field itself. Today, the definition of what the software
development life cycle constitutes is expanding and evolving as new technologies
emerge, forcing software developers to scramble to position themselves in a
rapidly changing business environment [34].

The requirements engineering process is a decision-rich complex problem
solving activity. Decision making and managing the phases of requirements
engineering is becoming increasingly crucial to the successful development of
software products. The complexity of the activities involved in the requirements
engineering process call for the need for organizations to coordinate the decision-
making process and increase visibility of the decisions and the roles played with
respect to decision-making in requirements engineering more visible. In order to
support the requirements engineering process, a better understanding of activities
involved in the process itself as well as an appreciation for the decisions made
throughout these activities is necessary [2]. In other words, software developers
need to have a better understanding of the range of decisions made at the

organizational, product and project levels to ensure effective management of the
requirements engineering process.

Software developers need a better understanding of what it takes to generate
adequate management support and stakeholders’ participation in the requirements
engineering process. The effective management of the requirements engineering
process mandates procedures and tools to support the phases of the requirements
engineering process model and also takes into account other issues e.g. social,
political and cultural issues. There is a strong need for decision support throughout
software development at the organizational, project and product levels. As new
software developments approaches are emerging, such as agile methods, trends in
business and technology force requirements engineering to expand its role in the
software development life cycle.

1.7 Empirical Evidence

Empirical research aims to capture quantitative evidence and compares theory to
reality, helping us to draw conclusions and to evaluate new methods and tools.
Empirical research is important to the requirements engineering field because the
results of such studies both help to characterize the potential problems (regarding
requirements at the business, product and project levels) with which the field is
concerned and evaluate new techniques in a relevant context. Empirical research
provides valuable insight into aspects of requirements engineering. Furthermore,
both academics and software practitioners need supporting evidence from case
studies, field studies and experiments before adopting new technologies.
Collecting empirical evidence from industry is often time consuming and can
become very complicated. However, this is necessary to quantify and demonstrate
their relative merits to the requirements engineering community.

Depending on the purpose of the evaluation, whether it is techniques, methods
or tools, and depending on the conditions for the empirical investigation, the three
most common types of quantitative investigations (strategies) are:
• Experiment [40]: Experiments are often highly controlled and hence also

occasionally referred to as controlled experiment and often run in a laboratory
setting. When experimenting, subjects are assigned to different treatments at
random.

• Case study [41]: The case study is normally conducted studying a real project.
Case studies are used for monitoring projects, activities or assignments. Data is
collected for a specific purpose throughout the study.

• Survey [4]: A survey is often an investigation performed in retrospect, when
e.g. a tool or technique, has been in use for some time. The primary means of
gathering qualitative or quantitative data are interviews or questionnaires.

1.8 Conclusion

This chapter has two key contributions: (a) from a theoretical point of view, it
provides a brief introduction to the area of requirements engineering, and (b) form
a practical point of view, it aims to provide the reader with guidelines to some
important aspects of requirements engineering that are needed to obtain the full
benefit of the other chapters of this book.

There are three parts in this book. Part 1 contains “state-of-the-art” chapters
that address the key requirements engineering activities mentioned in Section 1.5,
namely requirements elicitation, specification and modeling, prioritization,
requirements dependencies, impact analysis, requirements negotiation and quality
assurance issues. Part 2 is intended to address new trends in requirements
engineering and pinpoints advantages and pitfalls of these trends. Finally, Part 3
contains chapters focusing on empirical evidence from academic research as well
industrial case studies.

Reference

1. Anthony RN (1965) Planning and control systems: a framework for analysis. Harvard
University, Boston, USA

2. Aurum A, Wohlin C (2003) The fundamental nature of requirements engineering
activities as decision making process. Journal on Information and Software
Technology, 45(14): 945-954

3. Berry DM, Lawrence B (1998) Requirements engineering. IEEE Software 25(2): 26-29
4. Babbie E (1990) Survey research methods. Wadsworth, ISBN 0-524-12672-3
5. Boehm BW, (1988) A spiral model of software development and enhancement,

Computer, May, 21(5): 61-72
6. Boehm, BW, Papaccio, PN (1988) Understanding and controlling software costs. IEEE

transactions on software engineering, 14 (10): 1462-1477
7. Boehm BW, Grünbacher P, Brigges RO. (2001) Developing groupware for requirements

negotiation: lessons learned. IEEE, Software, May/June, pp. 46-55
8. Boehm, BW, (2003) Value-based software engineering. ACM SIGSOFT, Software

engineering notes, March, 28(2): 1-12
9. BSC’04 (2004) The challenges of complex IT projects. The report of a working group

from the Royal academy of engineering and the British computer society, ISBN 1-
903496-15-2. Access on 20th October 2004.
http://www.bcs.org/BCS/News/PositionsAndResponses/Positions/complexity.htm

10. Chaos’94 (1995) The Standish group. Access on 4th October 2004.
http://standishgroup.com/sample_research/

11. Chaos’98 (1999) A recipe for success. The Standish group report. Accessed on 4th
October 2004 http://www.standishgroup.com/sample_research

12. Chao’01 (2002) Extreme chaos. The Standish group report. Accessed on 4th October
2004 http://www.standishgroup.com/sample_research

13. Chatzoglou PD (1997) Factors affecting completion of the requirements capture stage
of projects with different characteristics. Information and Software Technology, 39 (9):
627-640

14. Curtis B, Krasner H, Iscoe N, (1988) A field study of the software design process for
large systems. Communications of the ACM 31(11):1268-1287

15. Davis, A. (1990) System testing: Implications of requirements specifications.
Information and Software Technology, 32 (6): 407-414

16. Edwards J, Coutts I, McLeod S (2000) Support for system evolution through separating
business and technology issues in a banking system. In: Proceedings of international
conference on software Maintenance, 11-14 October, pp. 271 -276

17. El Emam K, Madhavji NH (1995) A field study of requirements engineering practices
in information systems development. In: Proceedings of 2nd international symposium
on requirements engineering, York, England, IEEE CS Press, pp.68-80

18. European Software Institute (1996) European user survey analysis. Report USV_EUR
2.1, ESPITI project, January

19. Faulk SR, Harmon RR, Raffo DM (2000) Value-base software engineering: A value-
driven approach to product-line engineering. In: Proceedings of 1st international
conference on software product-line engineering, Colorado, August 28, 2000

20. Hall T, Beecham S, Rainer A (2002) Requirements problems in twelve companies: an
empirical analysis. IEE proceedings software, 149 (5): 153-160

21. Hofmann HF, Lehner F, (2001) Requirements engineering as a success factor in
software projects. IEEE Software, 18 (4): 58-66

22. Houdek F, Pohl K, (2000): Analyzing requirements engineering processes: a case study.
In: Proceedings of the 11th international workshop on database and expert systems
applications, Greenwich, UK, 6-8 September, pp.983-987.

23. Hunter A, Nuseibeh B, (1997) Analyzing inconsistent specifications. In: Proceedings of
3rd international symposium on requirements engineering, RE’07, Annapolis, Md,
pp.78-86

24. IEEE-STD 610.12-1990 - Standard Glossary of Software Engineering Terminology,
1990, Institute of Electrical and Electronics Engineers

25. Kotonya G, Sommerville I, (1998) Requirements engineering – processes and
techniques, John Wiley & Sons UK

26. Lauesen, S (2002) Software requirements - styles and techniques, Addison-Wesley,
London, UK

27. Loucopoulos P, Karakostas V, (1995): System requirements engineering. McGraw-Hill
Book company Europe

28. Lowe D, Eklund J, (2001) Development issues in specification of web systems. In
Proceedings of 6th Australian workshop on requirements engineering, 22-23
November, University of New South Wales, Sydney, Australia , pp. 4-13

29. Lubars M, Potts C, Richter C (1993) A review of the state of the practice in
requirements modelling. In: Proceedings of the IEEE international symposium on
requirements engineering, IEEE Computer Society, San Diego, USA, pp. 2-14

30. Macaulay LA (1996) Requirements engineering. Springer-Verlag, New York, London
31. Madhavji NH, Holtje D, Hong W, Bruckhaus T (1994) Elicit: a method for eliciting

process models. In: Proceedings of CAS conference, Toronto, Canada, 31 October – 3
November, pp.11-122

32. Martin S, Aurum A, Jeffery R, Paech B (2002) Requirements engineering process
models in practice. In: Proceedings of 7th Australian workshop on requirements
engineering, AWRE'02, 2-3 December, Melbourne, pp. 41-47

33. Menzies T, Easterbrook S, Nuseibeh B, Waugh S (1999) An empirical investigation of
multiple viewpoint reasoning in requirements engineering. In: Proceedings of IEEE
international symposium on requirements engineering, 7-11 June, pp.100 – 109

34. Miller E (2002) For survival, start thinking lifecycle management. Computer-aided
engineering, 21 (1): 15-18

35. Nguyen L, Swatman P (2003) Managing the requirements engineering process.
Requirements engineering, 8 (1): 55-68

36. Pouloudi A, Whitley EA (1997) Stakeholder identification in inter-organizational
systems: Gaining insights for drug use management systems. European journal of
information systems, 6: 1-14

37. Sommerville I (2001) Software engineering. Pearson Education Ltd, UK
38. Tveito A, Hasvold P (2002) Requirements in the medical domain: Experiences and

prescriptions. IEEE Software, Nov-Dec, pp.66-69
39. van Lamsweerde A., (2000) Requirements engineering in the year 00: a research

perspective. In: Proceedings of 22nd International conference on software engineering,
pp.5-19

40. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000)
Experimentation in software engineering – An introduction. Kluwer Academic
Publishers, Boston, MA, USA

41. Yin RK (1994) Case study research design and methods. Sage Publications, Beverly
Hills, California, USA

Author Biography

Aybüke Aurum is a senior lecturer at the School of Information Systems,
Technology and Management, University of New South Wales. She received her
BSc and MSc in geological engineering, and MEngSc and PhD in computer
science. She is the founder and group leader of the requirements engineering
Research Group (ReqEng) at the University of New South Wales. She also works
as a visiting researcher in National ICT, Australia (NICTA). Dr. Aurum is the
editor of “Managing Software Engineering Knowledge” book. Her research
interests include management of software development process, software
inspection, requirements engineering, decision making and knowledge
management in software development. She is on the editorial boards of
Requirements Engineering Journal and Asian Academy Journal of Management.

Claes Wohlin is a professor in software engineering at the School of Engineering
at Blekinge Institute of Technology in Sweden. He is also pro vice chancellor of
the institute. Prior to this, he has held professor chairs in software engineering at
Lund University and Linköping University. He has a M.Sc. in Electrical
Engineering and a Ph.D. in Communication Systems both from Lund University,
and he has five years of industrial experience. Dr. Wohlin is co-editor-in-chief of
the journal of Information and Software Technology published by Elsevier. He is

on the editorial boards of Empirical Software Engineering: An International
Journal, and Software Quality Journal. Dr. Wohlin received the Telenor Nordic
research Prize in 2004 for his achievements in software engineering and
improvement of software reliability in telecommunications.

