

C. Wohlin, "Estimation of Software Reliability Growth Model Parameters",
Proceedings of Workshop on Reliability Analysis of System Failure Data,

Microsoft Research, Cambridge, UK, 1-2 March, 2007 (by invitation and after
review).

Estimation of Software Reliability Growth Model Parameters

Claes Wohlin
Blekinge Institute of Technology, Sweden

E-mail: Claes.Wohlin@bth.se

Abstract

Software reliability growth models only become

useful if it is possible to estimate their parameters.
However, the parameter estimation is normally done
numerically, and hence a substantial amount of data is
all too often needed. This need is often not fulfilled by
modern development processes, for example
incremental development and agile methods. This
position paper identifies three alternative ways of
estimating the parameters in the models. Data from a
case study of two software releases is used to illustrate
how one parameter can be estimated from historical
data. Thus, alternative ways of estimating the model
parameters may be one way of making the models
useful in modern development practices.

1. Introduction

The traditional way of predicting software
reliability has since the 1970ies been the use of
software reliability growth models. They were
developed in a time when software was developed
using a waterfall process model. This is inline with the
fact that most software reliability growth models
require a substantial amount of failure data to get any
trustworthy estimate of the reliability. Software
reliability growth models are normally described in the
form of an equation with a number of parameters that
need to be fitted to the failure data. A key problem is
that the curve fitting often means that the parameters
can only be estimated very late in testing and hence
their industrial value for decision-making is limited.
This is particularly the case when development is done,
for example, using an incremental approach or other
short turnaround approaches. A sufficient amount of
failure data is simply not available.

The software reliability growth models have
initially been developed for a quite different situation
than today. Thus, it is not a surprise that they are not
really fit for the challenges today unless the problems
can be circumvented. This paper addresses some of the

possibilities of addressing the problems with software
reliability growth models by looking at ways of
estimating the parameters in software reliability growth
models before entering integration or system testing.

2. Three approaches

One possible way to address the problem with
software reliability growth models needing a lot of
data to make stable predictions is to estimate the model
parameters by other means. Three different approaches
exist:

• Historical data from previous similar situations,
i.e. a software reliability growth model
parameter value is used from a similar project
or situation,

• In-project estimation, i.e. parameters are
estimated using information from the current
project,

• Combined approach, for example building a
model for estimating a parameter from
historical data and then feeding the model with
current data.

As an example the Goel-Okumoto model [1] can be
mentioned that includes two parameters. The Goel-
Okumoto model is a simple non-homogeneous Poisson
process (NHPP) model with the following mean value
function:))exp(1()(btat −−=μ where a is the total
number of failures expected to be found as t goes
towards infinity. μ(t) is the expected number of found
failures at time t. Finally, b is possible to view as a
testing efficiency parameter. A higher value means that
more failures will be found per time unit.

When considering how to estimate the model
parameters, a basic understanding and interpretation of
the parameters is important. If relating the Goel-
Okumoto model and its parameters to the three
approaches above, it becomes clear that the total
number of failures is highly dependent on the current
project and hence the first approach above is less
suitable. On the other hand, the first approach may

very well be suitable, if we apply a similar test
approach, to estimate the test efficiency parameter.
This is further elaborated in an example in Section 3.
At this stage, it is also worth stressing that even if we
are only capable of estimating one parameter, it makes
the curve fitting considerably easier.

Going back to the number of failures expected to be
found, two possible methods have been identified for
estimation before integration and system testing:
complexity metrics and capture-recapture estimations.
Most work so far has been directed towards
complexity metrics [2], although models based on
them have also been criticized [3]. Complexity metrics
require that a model is built from previous projects or
increments, and then fed with new input to produce an
estimate of the total number of failures to be expected.
Capture-recapture has mainly in software engineering
been used in software inspections [4], but some
attempts to apply in to testing have also been published
[5]. We are currently planning a study on using
capture-recapture for typical components in the system
together with an industrial collaborative partner. The
idea is to identify a typical component and have
several testers testing the component to get an estimate
of the remaining number of defects in the component.
We have chosen to use a typical component, since the
company is not prepared to have several testers on
each component only for estimation purposes. We are
also looking into different ways of using this
information for one typical component to scale the
estimate to the whole system.

3. Example

As an example of the possibilities with estimating
from historical data, a summary of the main findings
from [6] is provided. Failure data was available for two
consecutive releases. The development and test
methods were similar between the releases. For the
first release, we got the following estimates at the end
of testing: a = 199 and b = 0.0981. This estimate of b
is now used for the following release. The estimation
of a is now straightforward and can be done as soon as
failure data is available. In this particular case, the
estimate did not become stable until week 14.
However, when estimating both parameters for the
second release the estimates did not become stable
until week 21. The total test period was 28 weeks and
hence it is a considerable advantage if we have a good
estimate after 50% or the test period instead of after
75%. The estimate at week 14 was that a = 270, and at
week 21 we got an estimate of a = 277 (based on only
the current system). The estimate at the end of the test
phase for the second release became: a = 250 and b =

0.0999. The success in this case is of course highly
dependent on the fact that the b value turns out to be
very similar. On the other hand, it shows that it is
possible, and hence this case could be viewed as a
“proof-of-concept”.

4. Summary

Software reliability growth models started to be
developed in an era where the waterfall model was
king (or queen), but they are less useful in modern
approaches to software development. Thus, we have
either to invent completely new ways of capturing the
information that is hidden in failure data or we have to
adapt the usage of the software reliability growth
models to current ways of developing software.

This position paper has pointed to some
opportunities when it comes to applying software
reliability growth models. Or more specifically to
different ways of estimating the software reliability
growth model parameters without having to wait until
the solution of one or more non-linear equations can be
solved numerically with a stable solution.

5. References

[1] A. L. Goel and K. Okumoto, “Time-Dependent Error-
Detection Rate Model for Software and Other Performance
Measures” IEEE Transactions on Reliability, Vol. 28, No. 3,
pp. 206-211, 1979.

[2] M. Zhao, C. Wohlin,, N. Ohlsson, M. Xie, “A
Comparison between Software Design and Code Metrics for
the Prediction of Software Fault Content”, Information and
Software Technology, Vol. 40, pp. 801–809, 1998.

[3] N. E. Fenton and M. Neil, “A Critique of Software Defect
Prediction Models”, IEEE Transactions on Software
Engineering, Vol. 25, No. 5, pp. 675-689.

[4] H. Petersson, T. Thelin, P. Runeson and C. Wohlin,
“Capture-Recapture in Software Inspections after 10 Years
Research – Theory, Evaluation and Application”, Journal of
Software and Systems, Vol. 72, No. 2, pp. 249-264, 2004.

[5] C. Stringfellow, A. Andrews, C. Wohlin and H.
Petersson, “Estimating the Number of Components with
Defects Post-Release that Showed No Defects in Testing”,
Software Testing Verification and Reliability, Vol. 12, No. 2,
pp. 93-122, 2002.

[6] M. Xie, G. Y. Hong and C. Wohlin, “Software Reliability
Prediction Incorporating Information from a Similar
Project”, Journal of Software and Systems, Vol. 49, No. 1,
pp. 43-48, 1999.

