C. Wohlin, M. Host and M. C. Ohlsson, "Understanding the Sources of Software
Defects: A Filtering Approach”, Proceedings the 8th International Workshop on
Program Comprehension, pp. 9-17, Limerick, Ireland, 2000.

Understanding the Sources of Software Defects:
A Filtering Approach

Claes Wohlin, Martin Host and Magnus C. Ohlsson
Dept. of Communication Systems
Lund University
Box 118, SE-221 00 Lund, Sweden
E-mail: (claes.wohlin, martin.host, magnus_c.ohlsson)@telecom.lth.se

Abstract

This paper presents a method proposal of how to use
product measures and defect data to enable understanding
and identification of design and programming constructs
that contribute more than expected to the defect statistics.
The paper describes a method that can be used to identify
the most defect-prone design and programming constructs
and the method proposal is illustrated on data collected
from a large software project in the telecommunication
domain. The example indicates that it is feasible, based on
defect data and product measures, to identify the main
sources of defects in terms of design and programming
constructs. Potential actions to be taken include less usage
of particular design and programming constructs,
additional resources for verification of the constructs and
further education into how to use the constructs.

Keywords
Defect understanding, prediction system, product measure-
ments, root cause analysis, software metrics.

1. Introduction

One important aspect in the development of software
systems is the understanding of the underlying reasons for
defects. The understanding forms the basis for decision and
actions in order to change the process, provide education or
direct verification and validation activities. This is the basis
for further improvement activities, such as evaluation of
new methods, choice of pilot projects etc. The objective of
this paper is to formulate a method to identify design and
program constructs that in some sense are over-represented
in terms of their relation to software defects. The under-
standing and identification of such constructs can then
form the basis for informed decisions for further actions.

The application of root cause analysis in software engi-
neering is described in, for example, [1, 2, 3]. The main
objective for the persons who perform the root cause analy-
sis is to try to extract the underlying reasons of the defects,
and in some cases the analysis is performed through inter-
views in the organization. The experience-based method,
suggested in this paper, proposes the use of simple metrics,
primarily product metrics, in the analysis. The result of the
evaluation can be an important input, together with defect
reports, interviews, etc. to the process of extracting the
underlying reasons. In a number of ways, this resembles
the type of approach that is taken in [4]. There, the defects
are first automatically analyzed according to filtering func-
tions based on functions of interest, and then the results
form a basis for human interpretation with the objective to
improve the process. The work presented here has similari-
ties with the first step described above, i.e., to automati-
cally analyse defects in order to receive a result that can be
interpreted by humans. This is also related to the data min-
ing process, for example, described in [5], where the objec-
tive is to obtain knowledge from databases which are so
large that it is not possible to do this manually.

The presented method is intended to be as easy to use as
possible. The basic idea behind it should be easy to under-
stand, and it is described as a number of simple steps that
should be carried out. The basic idea of the method is to
identify the design and programming constructs that are
most related to the defects observed. A construct is defined
as the logical abstraction of, for example, a specific pro-
gramming notation (an if-statement is abstracted to a logi-
cal decision) and the construct is represented through a
statement, for example, if-then-else in a programming lan-
guage. When constructs related to defects have been identi-
fied, it is possible to take informed decisions of how to
address the problems of software defects. The use of the

proposed method is illustrated through data collected from
a large software system.

The method presented in this paper is an approach to
experience-based understanding and identification of
design and programming constructs. The paper is outlined
as follows. The usage of product measurements is elabo-
rated in Section 2, and the method proposal is presented in
Section 3. To illustrate the method, an example, based on
real product measures and defect data, is presented in Sec-
tion 4. Finally, in Section 5, some conclusions are pre-
sented.

2. Product measures as a means of identifica-
tion

2.1. Process and product relations

The general hypothesis is that a better process results in
a better product. That is, there is a relationship between the
process and the product. The actual quantitative relation-
ship must be treated for each specific case, but methods are
needed to enable control of the relationship. To support the
relation from process to product (i.e., the upper arrow in
Figure 1), methods for prediction of product quality
attributes based on process characteristics are needed. This
includes predictions of the implications of process change,
for example, what is the effect on the product when the
process is changed (presumably improved) in a specific
way?

Prediction

Process

Requiring change

Figure 1. Process and product relationship.

The focus here is on supporting the relation from prod-
uct to process (i.e., the lower arrow in Figure 1). Based on
knowledge and experience of existing products, actions
may be taken to change the way software is developed or
the information can be used as a means for directing
resources to certain parts of the system. In addition, the
findings can be a basis for changing review checklists or
other methods for defect detection. The intention is to pro-
vide a simple method to identify design and programming
constructs that need special attention in some way.

The main source of information available is the product
and its defect statistics. Hence, it would be favorable if it

was possible to identify defect-prone constructs directly
from simple product measures.

2.2. Usage of product measures in general

In general, product measures can be used for two differ-
ent purposes, see Figure 2. First, it can be used to predict
attributes or behavior of the current or a forthcoming prod-
uct, and hence the product measures are fed into a predic-
tion system. This system must be derived based on, for
example, the relationships between different measures and
defects found. Prediction systems are further discussed in
[6] and the use of them to identify defect-prone compo-
nents is discussed in, for example, [7, 8]. Second, the meas-
ures can be used to identify problems in the development
process, i.e., to support the relationship from the product to
the process in Figure 1. This also requires a prediction sys-
tem. This type of system should be used to enhance the
understanding of defect-prone methods, techniques, activi-
ties or, as in this case, specific design and programming

constructs.

Prediction

Process

Identification of Product
defect-prone measures
constructs A
\ — — Prediction for the
Prediction Prediction product currently
system system b being developed and

future products

Figure 2. Two possible uses of product
measures.

It should be noted that the intention is not to pinpoint the
construct contributing to most defects, but to identify those
constructs which, in some sense, are over-represented
among the trouble reports.

3. Method description
3.1. Introduction

This section describes a method that can be used to
apply the prediction system as described in Section 2. In
particular, the method may be applied on documents from
the design and documents from implementation. The
method could be applied to other documents from other
phases, but as it is described here, it focuses on design and
programming constructs. The method can also be modified
in order to use it for other purposes than lowering the
number of defects.

The prediction method consists of a number of steps,
which should be executed in sequence. The steps resemble
the steps normally discussed in data mining [5], and they
are:

1. Data collection: The primary data to collect are defect
data and product data. This step provides the input to
the further steps of the method.

2. Data understanding: Since a number of measures are
collected it is important to obtain a basic understand-
ing of how the measures are related. This can be
obtained through a factor analysis.

3. Application of prediction filters: The application of
the prediction system relies on the process of deter-
mining correlations between measures collected from
product documentation, and defect data. Based on the
understanding and correlation between defect data and
other measures collected, constructs that are candi-
dates for actions are identified.

4. Recommendation: Finally, based on the outcome of
the previous steps, a recommendation for constructs to
be considered for special treatment is formulated. The
objective is not to be prescriptive, but to provide sup-
port for management in taking decisions.

These steps are further discussed below.
3.2. Data collection (step 1)

The first step in the method is data collection. Product
data and defect data should be collected for every compo-
nent included in the study. Preferably, product data are col-
lected as part of system development and defect data are
collected routinely from test and operation. It should be
noted that the method as such does not depend upon a cer-
tain definition of defects. It is basically up to the user of the
proposed approach to define what constitutes a defect, i.e. a
defect is defined by the company standard and reporting
routines.

Even if the data collection is not performed during the
actual development in the project, it should not pass too
long from the actual development until the data are col-
lected. Actions taken, with the identification as a basis,
should be timely and address the current problems.

The prediction system is based on the correlation
between the number of defects and the number of appear-
ances of statements related to different constructs in the
components. Therefore, the number of appearances and the
number of defects must be measured for the different prod-
uct documents.

For every component there is one desigh document and
one code document. In the normal case both are included
when the method is used, although it is not necessary. The
measures that should be collected from every component
are:

e Defect data, i.e. the number of defects that have
occurred during test and operation for every compo-
nent.

e Measure of size, i.e., for example, the number of lines
or code or the number of pages in every document.
One measure must be defined for design documents
and one measure must be defined for code documents.

e Measures according to the different constructs of
interest, i.e., the number of occurrences of statements
representing each construct. Measures should be col-
lected from both design documents and code docu-
ments.

The measures are further described and motivated in
Section 3.4. The measures used in this particular study can
with the right tools be counted automatically.

The constructs for which the number of occurrences is
measured must be defined. One example of a construct that
can be defined is a choice construct, which can be counted
through if-statements, case-statements, etc. Further exam-
ples are given in Section 4.2. The constructs must be
defined based on the nature of the documents from which
they are counted.

When data have been collected, outliers must be identi-
fied and removed. Any actions taken should be decided
based on components representing the normal execution of
the process. Outlier components are components that repre-
sent the effects of more special circumstances such as
external events, which are unlikely to ever appear again, or
having a newly employed responsible for a component.
These components should be removed and not used in the
method proposed in this paper, since it will not identify
problematic constructs in general. The latter is the main
concern with the proposed method. The identified outlier
components can, however, serve as an additional input to
further root cause analysis where it can be analyzed why
the component became an outlier.

Outlier analysis can be performed in a number of differ-
ent ways. One approach is:

« Draw Box-plots [6, 9], for every collected measure.

» Identify potential outliers from the plots.

* Review every potential outlier document and decide if
it is an outlier and should be removed or not. It must
be decided what documents to remove. For example,
if it is decided that a design document is an outlier and
should be removed it must be decided if the code doc-

ument from the same component also should be
removed.

Problematic components will probably be identified
through more than one measure.

3.3. Data understanding (step 2)

In this step, we should get a basic understanding of the
collected data. Especially the product data are investigated.
The different measures of the constructs are in many cases
related to each other. The data can be analyzed by descrip-
tive statistics such as plots, and the correlation between the
different measures can be investigated.

One important aspect of this step is to investigate the
relationships between the different constructs. Constructs
that vary together are closely related and hence if con-
structs are related and one of them is identified to be over-
represented in terms of defects, then it is probably also
wise to consider the constructs that vary in a similar pat-
tern. This can be performed through, for example, a factor
analysis (see for example [10]). This analysis results in a
number of factors representing underlying causes of the
different measures. Related measures are measures that are
highly correlated to the same factor. One factor analysis
can be performed for the design constructs and one for the
code constructs. If both the design document and the code
document are used for all components, it is possible to per-
form one factor analysis for all constructs, both code con-
structs and design constructs, instead.

3.4. Application of prediction filters (step 3)

3.4.1. Introduction. The prediction system proposed
includes a number of filters. The actual choice of the
number of filters and which filters are up to the user of the
suggested approach. The prediction system, as proposed
here, consists of four different filters, which have been for-
mulated based on subjective opinions about the expecta-
tions. Other filters could easily be formulated without
changing the basic idea of the method. The usage of each
filter results in a set of constructs that has been identified as

interesting, see Figure 3.

‘—>Set 1
L&Set 2
bSet 3
L&Set 4

Figure 3. Four prediction filters that upon
usage identify four different sets of
interesting constructs.

Prediction filter 1

All constructs Prediction filter 2

Prediction filter 3

Prediction filter 4

Different sets of interesting constructs could be identi-
fied based on the definition of evaluation criteria. There-
fore, the underlying motivation of the evaluation criteria
should serve as basis for formulating the prediction filters.

The four prediction filters are presented together with their
underlying motivation in Section 3.4.2.

The usage of the different prediction filters will in most
cases not result in exactly the same set of interesting con-
structs. All constructs in the union of the different interest-
ing sets should be considered when trying to understand
the source of software defects, but the constructs that are
members of most sets are in some sense more interesting
than other constructs.

3.4.2. Four prediction filters. The proposed prediction fil-
ters are:

e Prediction filter 1: identifies the construct with the
maximum correlation between the number of occur-
rences and the number of defects. Informal criterion
of filter: max(corr(#defects, #occurrences))

e Prediction filter 2: identifies the construct with the
maximum correlation between the normalized number
of occurrences and the normalized number of defects.
Here, the normalization is done with respect to the
size of the component where the number of occur-
rences is counted. Informal criterion of filter:
max(corr(#defects/size, #occurrences/size))

« Prediction filter 3: identifies the constructs where the
correlation between the number of occurrences and
the number of defects is greater than the correlation
between the number of occurrences and the size of the
components. Informal criterion of filter: corr(#defects,
#occurrences) > corr(size, #occurrences)

» Prediction filter 4: identifies the constructs where the
correlation between the number of occurrences and
the number of defects is greater than the correlation
between the size of the components and the number of
defects. Informal criterion of filter: corr(#defects,
#occurrences) > corr(#defects, size)

The usage of the four prediction filters results in four
sets of interesting constructs as illustrated in Figure 3.

The first set, 14, consists of only one construct, the con-
struct with the highest correlation between the number of
occurrences of the statement and the number of defects.
This is a straightforward and intuitive choice of construct,
but if the sizes of the components are too related to the
number of defects this may bias the result since the occur-
rences of the constructs are correlated with the size. Predic-
tion filter 2 instead uses the normalized values of the
number of occurrences and the number of defects instead
of the non-normalized values. This results in the second
set, 1.

Instead of identifying the construct satisfying a maxi-
mum correlation, as prediction filters 1 and 2 do, all con-
structs satisfying a correlation greater than some threshold
value could be identified.

Filters 3 and 4 have been defined since the size of the
components always can be measured, and because it in

Prediction filter 1

Possibility:
% Addition of

All construc Prediction filter 2

Set 2 constructs
grouped in

Prediction filter 3

Set 3 the same
factor through

Prediction filter 4

Set 4 . the factor

Interesting
constructs

q

analysis

Figure 4. Constructs which are related to the same factors as the already identified
constructs may also be considered interesting.

most cases has a significant impact on the number of
defects in the component. The third set, 15, consists of the
constructs that are more correlated to the number of defects
than they are correlated to the size. There is a strong corre-
lation between the size and the number of appearances,
because every statement adds to the size of the component
it is part of. This, in its turn, means that constructs that
appear in set I3 can be suspected to be very defect-prone,
and they are a natural basis for actions. The fourth set, 1,
consists of constructs that are more correlated to the
number of defects than they are with the size.

The underlying motivation of the four proposed predic-
tion filters is informally summarized in Table 1.

Table 1. Motivation underlying the definition of
the four prediction filters.

Motivation
Identifies the construct that contributes
the most to the number of defects.

Identifies the construct whose relative
occurrence contributes the most to the
relative number of defects.

Identifies the constructs that contribute
more to the number of defects than they
contribute to the size.

Identifies the constructs that contribute
more to the number of defects than the
size does.

It has not been formally proven that the proposed pre-
diction filters are the best possible filters that can be formu-
lated. The underlying motivation is, however, made
explicit to motivate the definitions of the prediction filters
proposed.

The prediction system presented here is based on simple
direct measures such as size. The size is in many cases a
measure that is simple and straightforward to define. It is,
of course, possible to include more complicated indirect
measures, such as complexity and coupling. If this is done
it is, however, important to carefully define how to meas-
ure these aspects.

Prediction filter
Prediction filter 1

Prediction filter 2

Prediction filter 3

Prediction filter 4

3.4.3. Relation to the Data Understanding step. In the
Data Understanding step of the method a basic understand-
ing is obtained about the measures that are collected. The
Data Understanding step results in a number of groups
(through the factor analysis) of constructs that are related.
When constructs are identified through the prediction sys-
tem, the other constructs that are related to the same factors
may also be considered interesting. This is shown in Figure
4,

It would be possible to identify factors from the data
understanding step instead of constructs. There are, how-
ever, a number of reasons why we do not recommend this:

* In many cases it is not possible to find high level con-
cepts that correspond to every factor. This makes it
hard to understand and identify actions based on the
factor when it is identified by the prediction system.

e The presented method does not require that a factor
analysis be performed. Data understanding can be per-
formed differently.

e All constructs do not have to be included in any factor
resulting from a performed factor analysis.

* Insome cases a factor analysis can result in only a few
factors.

3.5. Recommendation (step 4)

In the previous steps, a number of constructs that are
over-represented in the defect data have been identified.
The information obtained from the prediction system can
be used as an input to the decision process. The results are,
however, only recommendations of items that may be
worth studying further, and their cost-effectiveness must be
investigated before taking the final decision. The recom-
mendation step comprises the traditional work of root
cause analysis where the underlying reasons of defects are
determined. The identified constructs can be the input to
this work, but they may also be combined with interviews
and experience, in order to determine which actions to rec-
ommend.

If a particular construct is found to result in many
defects in comparison to the number of uses of this con-

struct, then it is necessary to investigate and examine the
reason for this. It is in most cases not the actual use of the
construct that is critical; it is errors made in connection
with its use. This means that it is not just to say: -“Do not
use construct A”. To really understand, it is necessary to
seek the cause of the defect based on the construct. The
underlying problem may be that a certain construct is used
when certain types of logical problems occur, and the rea-
son for the defect is that these types of logical problems are
inherently difficult and hence defect-prone.

While the prediction system is applied on data from
both the design step and the coding step, it may be possible
to determine that the constructs identified from implemen-
tation may be a result of the identified design constructs.
This must be investigated before making any changes
regarding the programming constructs, since a change
related to a design construct may change the use of differ-
ent programming constructs. This kind of effect cannot be
identified if the prediction system is only applied on data
from one development step. In many cases it is therefore
better to apply the prediction system on data from both the
design step and the coding step, as described in Section 4.

Another source of problem that can be identified may be
transformations when, for example, a specific design con-
struct is transformed into a programming language con-
struct. A transformation may not be straightforward due to
poor matching between the design method and the pro-
gramming language or a transformation does include a too
high degree of innovation. Thus, the transformations are
the cause of the problem and not the constructs as such.
This means that it is essential to use the prediction system
with care, i.e. not in a prescriptive way but rather as a guide
to understand the sources of software defects.

Based on the result from the prediction, three major
types of actions can be taken to improve the situation:

e Use less
Change the use of the construct to decrease the prob-
lems identified. For example, if it has been identified
that the use of “goto”-statements results in many
defects, then it may be possible to introduce structured
programming techniques that reduce the use of
unstructured constructs such as “goto”.

e Use more correct
Another possibility is to focus on verification tech-
niques, i.e. based on the identified problems the verifi-
cation techniques are improved. For example, the
inspections can be improved by introducing better
checklists in order to reduce the number of defects
using the problematic construct.

e Use better
Finally, the reason for the problems may be that the
people do not have adequate education to handle the
problematic construct. Thus, the solution may be to
provide better education of the personnel.

These three opportunities are always available when the
sources of software defects have been identified and better
understood. The actual action(s) must be determined based
on company internal experiences.

4. llustration of the prediction method
4.1. Introduction

It must be noted that the objective is not to highlight the
specific data used. The data are primarily used for illustra-
tion purposes. The data have been collected in retrospect
from a telecommunication software project, which devel-
oped switching software for a public exchange. The total
size of the studied code is approximately 30 KLOC, which
is divided into 28 components. A potential problem with a
retrospect study is the accuracy of some of the data, since
the documents have been interpreted after the project fin-
ished by a person who did not participate in the project.

Data have been collected from design documents and
from the software code. Defect data from the operational
phase have been collected from the maintenance depart-
ment of the operator of the software. The defect data come
from several installations of the software. Since data have
been collected both from the design and the code, the appli-
cation of the method can be illustrated for both design met-
rics and code metrics.

4.2. Data collection

In the study, 11 design measures and 10 code measures
were collected for each component. The 11 design meas-
ures consist of 2 different measures of size and 9 measures
of occurrences of different statements (constructs cy; - Cgg)-
The 10 code measures consist of one measure of size
(length) and 9 measures of occurrences of different state-
ments (constructs c.; - C.g). TO go into detail concerning
the design measures would lead too far, but briefly it can be
stated that they have been collected from a notation resem-
bling SDL [11]. The designh measures are summarized in
Table 2, but every construct is not fully described. The 9
code measures are summarized in Table 3. The program-
ming language is application specific and company inter-
nal.

Table 2. Summary of design measures.

Counted quantity Remark
Number of symbols size

Number of pages size

Tasks, including procedure calls and print | construct cy;
commands

Sending of signal construct Cyp

Receiving signal construct Cy3

Choice construct Cgy

State construct cyg

Out-connector construct Cyg

In-connector construct cq7

Receiving external signal construct Cgyg

Sending external signal construct Cygq

Table 3. Summary of code measures.

Counted quantity Remark
Lines of code size
‘var’ statements (declared variables) construct ¢,y

‘retrieve’ statements (advanced signal- construct c,

an outlier only for one of the documents. Again, this is
because the study is performed in retrospect and it is
impossible to know if the anomalies are due to the specific
document or the component as such.

Therefore, all 8 components are removed. This may
seem as many, but it should be remembered that it was
enough that a component turned up as an outlier in one out
of 20 box plots to be regarded as an outlier. Moreover, the
objective is to understand and identify the general behav-
ior. Further, the example is included in order to explain the
method, the result is not the most important. In a real case
it is, however, important to carefully decide which docu-
ments to remove.

4.3. Data understanding

The collected data are analyzed through a factor analy-
sis (see for example [10]). One factor analysis is performed
for both the design constructs and for the code constructs.
The result (factors with eigenvalue > 1 are used and
orthogonal/varimax rotation is applied) is shown in Table
4,

Table 4. Results of the factor analysis for
design and code constructs.

ling statement) construct | F1 F Fs F4 Fs
‘enter’ statements (receiving a signal) construct c.3 Ca1 0.147 0.096 0.875 20092 | 0318
‘send’ statements (sending of a signal) construct Cgy Caz 0.906 0.038 0.313 0143 | -0.026
‘goto’ statements (used in a more struc- construct cg P 0879 | 0153 | 0209 | -0.103 | 0145
tured way as ‘break’ instructions, for a3 i i i . .
example, breaking a repetition statement) Ca4 0404 | 0133 | 0.856 | -0.066 | 0.045
‘branch on’ statements (conditional construct Cg Cds 0.127 | -0.239 | -0.137 | 0.876 | -0.041
branching)
_ i : Cd6 -0.011 | 0.357 | 0.237 | 0.193 | 0.824
‘to’ statements (explicit addressing of sig- | construct c
nals) (exp gorsig ¢ Ca7 0196 | 0.176 | 0.156 | -0.052 | 0.932
‘if” statements construct Cg Cas 0.927 | 0272 | -0.085 | 0.021 | 0.106
‘goto’ statements (unstructured goto, construct Cg Cdo 0.92 0.261 | 0.098 | -0.094 | 0.121
which simply jumps to somewhere else in Co1 0774 | 0437 | 0131 | 0171 | 0.002
the program)
" Ceo 0.310 | -0.257 | 0.003 | -0.520 | -0.160
Data are initially collected for 28 components. When
the approach described in Section 3.2 for identification of Ce3 0890 | 0.370 | 0.020 | 0.130 | 0.072
outliers is used, 8 potential outliers are identified. That is, Ceq 0.842 | 0104 | 0393 | -0.119 | 0.095
Box-plots have been drawn for the measure of defects, the Ces 0.274 | 0.880 | 0.299 | 0.048 | 0.068
measures ofSS|ze, and the 18 measurg; ac_]ccpr(;jlr;g to the Cos 0246 | 0788 | -0.110 | -0.079 | 0471
constructs. Some components were i gr}tl ied for more - 02 o847 10175 | -0112 0284
than one measure, but some were identified for only one
measure. In this example a policy has been taken to remove Ce 0267 | 0904 | 0241 | 0038 | 0.112
every component that can be suspected to be an outlier. Ceg 0.274 | 0933 | 0.123 | 0.030 | 0.107

This is because the study is performed in retrospect and it
is impossible to obtain the documents or contact the people
that worked with the components. In this example, both the
design and code documents were removed when a compo-
nent was removed, even if the component was identified as

In the table the large (a threshold value of 0.750 is cho-
sen for this example) loadings, i.e. the correlations between
a construct and a factor, are written in bold. Five different
factors can be observed:

* Fyismostrelated to gy, Cy3, Cyg: Cdgs Ce1s Cczs @and Cey.
These constructs mainly deal with sending and receiv-
ing signals. In addition to the signal constructs the
constructs also include the var construct (c.;), but
mainly the factor is related to signalling constructs.

* F, is most related to C5, Ceq, Co7: Cogr @Nd Cog. These
constructs deal with various programming aspects and
it is not as easy to describe this factor as it is to
describe Factor F.

* Fzismost related to cq; and cy4. These two constructs
deal with choices and an additional construct dealing
with various constructs such as procedure calls and
printing.

* F, is most related to cy4s. This construct deals with
states.

* Fgis most related to cqg and cq47. These constructs deal
with connectors.

4.4. Application of prediction filters

4.4.1. Results from the design step. As a measure of size
two different measures have been collected and can be con-
sidered:

* Number of pages of design,
¢ Number of graphical symbols.

Here the first alternative is chosen. The correlation
between the number of defects and the size is 0.475. In Fig-
ure 5, the correlations needed to determine the interesting
sets are plotted.

1.0
0.8
0.6
0.4
0.2

0.0
0.2 4edi—cd2cd3cdd cde ¢d7 cdg cdo

I corr(#failures,
#occurrences)
Il corr(size, #occurrences)

O corr(#failures/size,
#occurrences/size)

0.4
0.6

Figure 5. Correlation needed to determine the
interesting sets of design
constructs.

Based on the correlations, the four sets of interesting
constructs can be determined as:
* 1y ={cys} (the highest of the left bars)
o I, ={cq47} (the highest of the right bars)
* I3 is empty (the left bar is lower than the middle bar
for all constructs)
o lqisempty (the left bar is lower than 0.475 for all con-
structs)
Two constructs that seem to significantly contribute to
the number of defects are ¢y, and cg7.

4.4.2. Results from the implementation step. The corre-
lation between the number of defects and the size (length)
of the components is 0.482. In Figure 6, the correlations
needed to determine the sets of interesting constructs are
plotted.

12
1.0
0.8
0.6
0.4
0.2
0.0
02
04

D corr(#failures,
#occurrences)

W corr(size, #occurrences)

D corr(#failures/size,
#occurrences/size)

| 0C2 o3 ool oo oo8 oc7 ool ccd

Figure 6. Correlations needed to determine
the interesting sets of code
constructs.

Based on the correlations, the four sets of interesting
constructs can be determined as:

* I3 ={cco}
o lr={cy}
* Iz3={c}

o lyisempty

The interesting constructs that are identified from the
filters are c., and cgq. It is interesting to notice that c, is
not included in any factor. As it is discussed in Section
3.4.3, if filtering was done with the factors instead of the
constructs no factor would be related to this construct.

4.4.3. Summary. In Section 4.4.1 and Section 4.4.2 the

following constructs were identified: Cgy4, Cg7, Ccop, and Ceo.

C¢, is not highly related to any of the identified factors, but

the other constructs are related to F3, F5, and F». If all con-

structs related to these factors are considered interesting,
the following constructs have been identified: ¢4y, Cqa, Cge:

C47: Ccor Cc5s Cegr Ce7» Ceg: and Ceg. These constructs deal

with

« Jumps, i.e., connectors, goto, and branch (cqg, C47, Ccs,
Ces, aNd Ceg)-

* Choices (cyq and cg).

e Various additional constructs dealing with, for exam-
ple, explicit addressing of signals, retrieving signals,
and procedure calls. ¢, is one of these constructs.
This construct is not often used and it does not appear
in every component. Lack of experience of it may be a
reason to that errors are made when this construct is
used.

4.5. Recommendation

The use of the prediction system identifies a number of
design and programming constructs. These are mainly con-

cerned with jumps (Cgg, Cq47, Ces, Ceq: @and Cgg), choices, and
various other constructs. Unfortunately, it is not possible to
say more since the data were collected in retrospect and
primarily used here for illustration purposes, and not really
to propose any specific action. It has, however, been shown
that it is possible to identify and understand sources of soft-
ware defects in terms of design and programming con-
structs.

5. Summary

Software defects are a costly fact. Thus, methods, pref-
erably simple methods, allowing for identification and
understanding of potential sources of defects are needed. A
simple method for identification of design and program-
ming constructs that contribute more than expected to soft-
ware defects has been proposed. The use of the method has
been illustrated in a study. The objective is that the method
should be generally applicable although it has been used
here to identify critical design and programming con-
structs.

The study has illustrated that it is possible to extract val-
uable information from existing products in order to iden-
tify understand sources of software defects. The
relationship between the software process and the product
is poorly understood, in particular in quantitative terms.
Hence, the objective of this work is to improve this situa-
tion by supporting the feedback from product measures to
decisions and actions related to the software process.

Acknowledgment

This work was partly funded by The Swedish National
Board for Industrial and Technical Development
(NUTEK), grant 1K1P-97-09673.

References

[1] D N. Card, “Learning from Our Mistakes with Defect Causal
Analysis”, IEEE Software, pp. 56-63, January-February 1998.

[2] G. Damele, G. Bazzana, F. Andreis, S. Aquilio, S. Arnoldi and
E. Pessi, “Process Improvement through Root Cause Analysis”,
Proceedings Third International Conference on Achieving
Quality in Software, pp. 35-47, 1996.

[3] J. Kajihara, G. Amamiya and T. Saya, “Learning from Bugs”,
IEEE Software, pp. 46-54, September 1993.

[4] I. Bhandari, M. Halliday, E. Tarver, D. Brown, J. Chaar and R.
Chillarege, “A Case Study of Software Process Improvement
During Development”, IEEE Transactions on Software
Engineering, Vol. 19, No. 12, pp. 1157-1170, 1993.

[5] U. Fayyad, G. Piatetsky-Shapiro and P. Smyth, “The KDD
Process for Extracting Useful Knowledge from Volumes of Data”,
Communications of the ACM, Vol. 39, No. 11, pp. 27-34, 1996.

[6] N. Fenton and S. L. Pfleeger, Software Metrics - A Rigorous &
Practical Approach, Second Edition, International Thomson
Computer Press, London, UK, 1996.

[71 T. Khoshgoftaar, A. S. Pandya, and D. L. Lanning,
“Application of Neural Networks for Predicting Program Faults”,
Annals of Software Engineering, Vol. 1, No. 1, pp. 141-154, 1995.

[8] M. C. Ohlsson and C. Wohlin, “ldentification of Green,
Yellow and Red Legacy Components”, Proceedings International
Conference on Software Maintenance, pp. 6-15, 1998.

[9] C. Wohlin, P. Runeson, M. Hdést, M. C. Ohlsson, B. Regnell
and A. Wesslén, Experimentation in Software Engineering — An
Introduction, Kluwer Academic Publishers, 1999.

[10] S. K. Kachigan, Multivariate Statistical Analysis: A
Conceptual Introduction, Radius Press, New York, second
edition, 1991.

[11] F. Belina, D. Hogrefe, and A. Sarma, SDL with Applications
from Protocol Specifications, Prentice Hall, UK, 1991.

